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Abstract

Simulation-based urban traffic and mobility models are increasingly being used to evaluate changes to network
designs and operations of large urban networks. However, these simulation models are computationally costly
to evaluate. Hence, when used within simulation-based optimization frameworks, it is important to use an
efficient optimization algorithm that can identify good solutions within a limited number of iterations. This paper
proposes a Bayesian optimization technique suitable for high-dimensional problems. The technique combines
ideas from Bayesian optimization, Gaussian processes and analytical transportation modeling. The proposed
method incorporates problem-specific prior information in the covariance function of the Gaussian process. The
problem-specific prior information comes in the form of an analytical transportation model. This helps to promote
exploration of the feasible region with the aim of finding better solutions. This can be on top of using the analytical
transportation model in the prior mean function of the Gaussian process. We illustrate how the proposed method
works on a 1-D example, and test it by running a Bayesian optimization of the 100-D Griewank function. We
then demonstrate the use of the proposed Bayesian optimization approach on a large-scale fixed time traffic
signal control problem for Midtown Manhattan. The results show that problem-specific information in the form
of analytical transportation models can be used for both exploration and exploitation to tackle high-dimensional
transportation problems efficiently using Bayesian optimization.

1 Introduction

Simulation-based urban traffic and mobility models are tools commonly used by transportation agencies and
operators (e.g. ridesharing operators) to evaluate changes to their network designs or operations (Stone 2021,
TSS-Transport Simulation Systems 2019, 2009). For instance, transportation agencies may use simulators to
evaluate traffic management strategies, such as congestion pricing and traffic signal control. Ridesharing operators
may use simulators to evaluate new algorithms before releasing it to production (Greenhall 2016).

These simulators can embed detailed models of traveler behavior, such as mode choice, route choice and
response to real-time traffic conditions. This allows the interactions between travelers to be modeled. At the
same time, the simulators can keep track of many quantities of interest for every traveler in the network in intricate
detail (Pell et al. 2017), such as travel time, fuel consumption, number of stops, etc. Furthermore, the resolution
of the simulation models, as well as the ability to simulate large-scale networks, are constantly improving. This
makes it all the more enticing for transportation agencies and operators to make use of simulators in their planning
and operations. For an in-depth review of existing traffic simulation models, we refer the reader to Barceló et al.
(2010).
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However, the higher simulation model resolution and greater spatial coverage of networks being simulated also
lead to increasing computational demand of simulators. When used within simulation-based optimization (SO)
frameworks, the computational cost of evaluating the simulator becomes more apparent, since a simulation run
is required each time the objective function is evaluated. With a stochastic simulator, multiple simulation runs
may even be required to obtain an accurate estimate of the objective function value.

At the same time, transportation agencies and operators are interested in optimizing for entire urban networks.
For some problems, such as urban traffic signal optimization (Osorio and Chong 2015) and origin-destination (OD)
matrix calibration (Zhang et al. 2017, Lu et al. 2015), this might lead to optimization problems of increasing
dimensions. The increasing problem dimensionality means that more simulation runs (i.e. objective function
evaluations) might be required. Hence, this points to the need for more efficient optimization algorithms.

In this work, we consider high-dimensional simulation-based optimization problems that have continuous and
general (i.e. non-convex) objective functions, with unknown analytical forms. The constraints are assumed to be
analytical and differentiable. Such a problem can generally be formulated as:

min
x∈χ

f(x, z; p) ≡ E[F (x, z; p)], (1)

where f is the objective function, F represents the stochastic output of a simulation run, x is the high-dimensional
vector of decision variables, χ is the feasible region, z denotes the vector of endogenous simulation variables and p
represents the vector of deterministic exogenous parameters. The exogenous parameters and endogenous variables
are specific to the problem in question. Examples for a traffic signal control problem are provided in Section 5.2.

Given the computation cost of evaluating the simulator every time we want to obtain an estimate of the
objective function, we also assume a limited computational budget (i.e. the total number of simulation runs is
limited). Since we are working with high-dimensional problems, the limited computational budget means that we
are working in the regime where we have more decision variables than observations. When working in this regime,
it is crucial for the optimization algorithm to balance exploration and exploitation so as to find a good solution
within the limited computational budget. In the context of optimization, exploration refers to the search in regions
with few evaluated points, while exploitation refers to searching in regions with good estimated performance (Sun
et al. 2014).

In the past, common approaches used to tackle transportation SO problems often consisted of general-purpose
algorithms, including genetic algorithms (Jin et al. 2017, Sebastiani et al. 2016, Paz et al. 2015, Stevanovic
et al. 2008, Teklu et al. 2007, Yun et al. 2006) and simultaneous perturbation stochastic approximation (SPSA)
(Tympakianaki et al. 2018, Lu et al. 2015, Tympakianaki et al. 2015). While these general-purpose algorithms can
easily be applied to different problem types, they are not designed to be used under a tight computational budget.
Instead, they tend to be designed based on asymptotic properties. When used in high-dimensional SO, the large
number of objective function evaluations (i.e. simulation runs) required means that it is rather computationally
inefficient. This is especially true when working with a computationally demanding simulator.

A different approach to SO involves combining information from the simulator with problem-specific prior
information in the form of analytical transportation models with the aim of identifying good solutions efficiently.
Osorio and Bierlaire (2013) proposed a metamodel SO framework, which embedded an analytical queueing network
model approximation of the objective function (Osorio and Bierlaire 2009) in the metamodel. This metamodel SO
approach has been used to tackle various types of high-dimensional problems in the transportation field, including
urban traffic signal optimization (Chong and Osorio 2018, Osorio and Chong 2015, Osorio and Nanduri 2015a,b),
OD matrix calibration (Zhang et al. 2017), congestion pricing (Osorio and Atastoy 2017) and car-sharing network
design (Zhou et al. 2018). However, the metamodel SO approach does not explicitly try to balance exploration
and exploitation. For instance, a general-purpose sampling strategy (e.g. uniform random sampling) is often
used for exploration. There is potential to improve the performance of SO algorithms by exploiting the structural
information of analytical transportation models to design suitable exploration-exploitation techniques.

To address the issue of balancing exploration and exploitation in SO, we propose a method to incorporate
problem-specific prior information in the Bayesian optimization (BO) framework using Gaussian processes (GP)
(a brief explanation of GPs is provided in Section 3.1). On top of using the analytical transportation model in
the prior mean function of the GP, we propose a new analytical transportation model-based covariance function.
Using the analytical transportation model in the prior mean function of the GP allows the algorithm to exploit the
problem-specific prior information to quickly identify good solutions. On the other hand, the proposed covariance
function is designed to encourage the algorithm to explore in regions with different analytical transportation
model value from points which have already been evaluated. By incorporating an analytical transportation model
in the prior mean function and the covariance function of the GP, the proposed method achieves the following
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aims:

• Efficiency: The proposed covariance function allows the Bayesian optimization algorithm to efficiently
tackle high-dimensional optimization problems with a limited number of simulation runs, by exploiting
the correlations between the objective function and analytical transportation model to encourage targeted
exploration of the feasible region.

• Balances exploration and exploitation: The Bayesian optimization approach used in the proposed
method provides a way to balance the exploration-exploitation trade-off compared to the existing metamodel
SO approach.

• Generality: The method can be easily generalized to other classes of optimization problems with expensive-
to-evaluate objective functions, as long as a suitable analytical transportation model for approximating the
objective function is available.

In the following section, we provide a review of BO, along with previous efforts attempting to use BO to solve
high-dimensional optimization problems. In Section 3, we briefly present how GPs and BO work, followed by the
proposed method used to combine problem-specific prior information in GPs, for use in BO. We then illustrate,
in Section 4, how the method works in the case of the 1-dimensional Griewank function, followed by a validation
of the method using the 100-dimensional Griewank function. The proposed method is tested in a case study
using a model of Midtown Manhattan for a traffic signal optimization problem. The results of the case study are
presented and discussed in Section 5. Lastly, the conclusions are provided in Section 6.

2 Review of High-Dimensional Bayesian Optimization

Bayesian optimization was first popularized by the efficient global optimization algorithm proposed by Jones
et al. (1998). In recent years, BO has become widely-used for tackling global optimization problems where the
objective function is expensive to evaluate, and hence the number of objective function evaluations allowed is
small. It provides a very efficient approach for the optimization of expensive-to-evaluate functions (Sasena et al.
2002, Jones et al. 1998), with the efficiency stemming “from the ability of Bayesian optimization to incorporate
prior belief about the problem to help direct the sampling, and to trade off exploration and exploitation of the
search space” (Brochu et al. 2010). In the field of transportation, BO has been employed to tackle problems such
as OD matrix calibration (Schultz and Sokolov 2018) and toll optimization (Chen et al. 2014).

Most often, GP models are used as part of BO to approximate the unknown objective function. GPs provide
an attractive way “to construct a Bayesian non-parametric regression model” (Shahriari et al. 2015), as analytical
expressions are available for the posterior GP. This includes an analytical estimate of the variance of the posterior
GP predictions, which is used in BO to balance the exploration-exploitation trade off. Other models have been
used to approximate the objective function, such as the tree Parzen estimator (Bergstra et al. 2013, 2011) and
random forests (Shahriari et al. 2015, Hutter 2009), but these models tend to be less suitable when working with
a limited number of evaluated points. This is due to the data set (i.e. evaluated points) being split at every
decision node of the trees. With a limited number of evaluated points, the trees have to be shallow to prevent
overfitting. Furthermore, Mockus (1994) showed that the GP prior distribution satisfies the conditions necessary
for BO to converge to the optimum. Hence, this makes GP models fitting for use in BO. A brief introduction to
GPs is provided in Section 3.1.1. However, for a comprehensive guide on GPs, we refer the reader to Williams
and Rasmussen (2006).

Historically, GPs are more frequently referred to as Kriging in geostatistics. This name has carried over to the
metamodel-based optimization literature, where the Kriging metamodel is commonly used to approximate the
objective function (see e.g. Kleijnen (2017)). While known by different names, the Kriging metamodels and GPs
are mathematically equivalent. For instance, ordinary Kriging is equivalent to a GP with a constant prior mean
and deterministic observations (Kleijnen 2017), while stochastic Kriging (Ankenman et al. 2010) is equivalent
to a GP with a noise term and is used to model a stochastic function. The main difference between BO and
Kriging metamodel-based optimization is that the latter directly optimizes the metamodel at each iteration (see
e.g. Osorio and Bierlaire (2013)), while an acquisition function is derived from the GP and optimized in BO
instead. The acquisition function helps to guide the search for the optimum, and is designed to systematically
balance the exploration-exploitation trade-off. A more detailed explanation of the acquisition function is provided
in Section 3.1.2.
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Despite the successes of BO, it is widely acknowledged that BO is mostly limited to low-dimensional problems,
typically less than 10 dimensions (Wang et al. 2016, Kandasamy et al. 2015). Scaling BO for use in higher-
dimensional problems has been a major challenge in the field that remains unsolved. There are two key reasons
for the poor performance at higher dimensions. First, there is the challenge of modeling the objective function
at higher dimensions – the number of observations needed to get a good coverage of the feasible region increases
exponentially with dimensions (Moriconi et al. 2020, Wang et al. 2016, Kandasamy et al. 2015). In the context of
SO, this presents a significant practical challenge due to the high computational demand of obtaining observations
through simulation. Second, there is the challenge of globally optimizing the acquisition function at every iteration
(Rana et al. 2017, Kandasamy et al. 2015). The acquisition function often has many flat regions and can be highly
multimodal, particularly in higher dimensions, making it tricky to find the optimum.

There are some other minor limitations of BO, which we do not directly address in this paper. In particular,
these limitations are associated with the use of GP models for approximating the objective function. First, GPs
are unable to model conditional variables, where a variable only becomes active when certain conditions are met
for other decision variables. In such cases, tree-based models have been shown to be more suitable (Bergstra
et al. 2013, 2011). Second, the traditional GP set-up also assumes stationary kernels (i.e. the covariance function
has a fixed lengthscale). However, some objective functions may be non-stationary (Snoek et al. 2014). As a
result, the traditional GP would poorly approximate the objective function, thus resulting in poor optimization
performance.

There have been many attempts to tackle high-dimensional BO. Most of the existing work assumes that
the objective function mostly depends on a lower-dimensional “active” subspace (Munteanu et al. 2019, Schultz
and Sokolov 2018, Wang et al. 2016, Chen et al. 2012). For instance, Wang et al. (2016) tackled a problem
with a billion dimensions, by projecting the higher-dimensional space to a lower-dimensional subspace through
random embedding. Li et al. (2017) also proposed a dropout strategy to optimize only a subset of variables
at each iteration. However, these methods assume that the objective function has a lower-dimensional “active”
subspace, which may not hold true in general. Moriconi et al. (2020) showed that projecting the data onto a lower-
dimensional subspace can lead to underfitting of the GP. Hence, they proposed the quantile GP for selecting on
the best observation for each parameter sub-configuration when fitting the GP. However, the quantile GP method
still assumes that the objective function is effectively low-dimensional. The elastic GP (Rana et al. 2017) tries to
overcome the problem of flatness in the acquisition function by making the covariance function lengthscale large
enough, so as to get some significant (i.e. nonzero) gradient values to aid the acquisition function optimization.
The Add-GP-UCB model (Li et al. 2016) treats the acquisition function as an additive function of mutually
exclusive lower-dimensional components, assuming that the acquisition function can be decomposed into an
additive form. This allows the optimization of the acquisition function to be done in a lower-dimensional space.

A relevant branch of BO involves the use of multi-output GPs (Liu et al. 2018, Poloczek et al. 2017, Kandasamy
et al. 2016, Swersky et al. 2013). It attempts to use correlation between the objective function and low-fidelity
models, in order to inform the search for the optimum. The main aim of using multi-output GPs is to reduce
the number of objective function evaluations, and hence computing time, needed to find the optimum. While
multi-output GPs could potentially be used to provide better coverage of the feasible region through correlated
observations of the low-fidelity models (see e.g. Swersky et al. (2013)), the large number of observations required
for a high-dimensional problem could lead to another computational bottleneck – computing the posterior GP
model involves a matrix inversion and typically scales as O(t3) (Williams and Rasmussen 2006, Chapter 8), where
t is the number of observations.

In order to tackle high-dimensional SO problems with BO, we propose to take advantage of problem-specific
prior information. This allows us to avoid the assumption that the objective function has a lower-dimensional
“active” subspace. At the same time, our proposed method uses problem-specific prior information in a way that
helps to overcome the lack of observations when modeling the objective function using a GP, while remaining
computationally efficient. In the following section, we provide a brief explanation of how GPs and BO work,
followed by a presentation of our proposed method.

3 Method

We first provide a brief explanation of how GPs and BO work in Section 3.1. Readers who are familiar with BO
and GPs may wish to skip to Section 3.2. In Section 3.2, we propose methods to incorporate problem-specific
prior information into GPs through the prior mean function and the covariance function.
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3.1 Bayesian Optimization

Bayesian optimization consists of two main components – a model of the objective function that can be updated
with the observations at every iteration, as well as the acquisition function which decides on the next point to
evaluate. In Section 3.1.1, we provide a brief introduction to one of the most popular objective function models
for use in BO – Gaussian processes. This is followed by an explanation of the role of the acquisition function in
BO in Section 3.1.2, and a summary of the BO algorithm in Section 3.1.3.

3.1.1 Gaussian Process.

A GP represents a distribution over functions, and is specified by a prior mean function m(·) and a covariance
function k(·, ·). Specifically, given a set of t points x1:t = [x1, . . . ,xt]

T , where xi ∈ RD, i = 1, . . . , n, with objective
function estimates f1:t, where fi = f(xi), the GP prior can be defined by the multivariate normal distribution:

f1:t ∼N (m1:t,K (x1:t,x1:t)) , (2)

where m1:t is the vector of mean function values such that mi = m(xi), and K(x1:t,x1:t) is the covariance matrix,
with the (i, j)th element being k(xi,xj) (i.e. the covariance between xi and xj).

The choice of prior mean function and covariance function is up to the user. Simply speaking, the mean
function in GPs defines the mean value of the normal distributed objective function estimate at a given point
in the feasible region, while the covariance function defines the covariance between two points which represents
how correlated two points are believed to be. Ideally, the prior mean function and the covariance function
should be chosen such that they best represent the objective function. For instance, if the objective function
contains a periodic component, the covariance function should ideally contain a periodic component too (e.g.
see Chapter 5.4.3 of Williams and Rasmussen (2006)). In the case where the form of the objective function is
completely unknown, a zero function or constant is often used as the prior mean function, while a popular choice
of covariance function is the squared exponential function:

kSE(xi,xj) = σ2
0 exp

(
−‖xi − xj‖22

2`2

)
, (3)

where the hyperparameters σ2
0 and ` are the amplitude and characteristic length-scale of the covariance respec-

tively. The hyperparameter ` determines the Euclidean distance between two points required for the two points
to effectively be uncorrelated. In Section 3.2, we show how problem-specific information, when available, can be
incorporated in the prior mean function and the covariance function to aid the optimization of high-dimensional
problems. For more information and examples of covariance functions, we refer the reader to Chapter 4 of
Williams and Rasmussen (2006).

One of the factors contributing to the popularity of GPs is its analytical tractability. As seen from Eq. (2),
the points x1:t are jointly Gaussian in the GP prior. Similarly, a new point x∗ would also be jointly Gaussian
under the GP prior: [

f1:t

f(x∗)

]
∼N

([
m1:t

m(x∗)

]
,

[
K (x1:t,x1:t) k(x1:t,x∗)
k(x∗,x1:t) k(x∗,x∗)

])
, (4)

where k(x∗,x1:t) = [k(x∗,x1), . . . , k(x∗,xt)], (5)

k(x1:t,x∗) = [k(x∗,x1:t)]
T . (6)

If the points x1:t and estimates f1:t were treated as previous observations (i.e. training points), it is possible to
condition on them to limit the distribution of possible functions as predicted by the GP (i.e. fitting the GP prior
to the observations). This is known as the posterior or predictive distribution, and can be obtained analytically
using the Sherman-Morrison-Woodbury formula (see e.g. Appendices A.2 and A.3 of Williams and Rasmussen
(2006) for details on the derivation). In the case of noisy observations (assuming additive i.i.d. Gaussian noise
with variance τ2), the resulting posterior distribution given the t observations takes on a Gaussian distribution,
with posterior mean function µt(x∗) and predictive variance σ2

t (x∗):

f(x∗)|f1:t,x1, . . . ,xt ∼N
(
µt(x∗), σ

2
t (x∗)

)
, (7)

µt(x∗) = m(x∗) + k(x∗,x1:t)
[
K(x1:t,x1:t) + τ2I

]−1
(f1:t −m(x∗)) , (8)

σ2
t (x∗) = k(x∗,x∗)− k(x∗,x1:t)

[
K(x1:t,x1:t) + τ2I

]−1
k(x1:t,x∗), (9)
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Figure 1: Illustration of a GP posterior and acquisition function for a 1-D optimization problem.

where I is the identity matrix. Eq. (8) indicates that the posterior mean function µt(x∗) is fitted according to
the difference between the observed objective function value and the prior mean function value (i.e. f1:t−m(x∗)).
Eq. (9) shows that the predictive variance σ2

t (x∗) of the posterior GP is reduced in areas where there is strong

covariance with existing observations (i.e. when the term k(x∗,x1:t)
[
K(x1:t,x1:t) + τ2I

]−1
k(x1:t,x∗) is large).

Note that the computation of the matrix inversion
[
K(x1:t,x1:t) + τ2I

]−1
in Eq. (8) and (9) has a computational

complexity of O(t3), and may pose a challenge when there is a large number of observations (e.g. 105 observations).
However, in the case of SO, the number of observations tends to be too small for this to be a problem.

A 1-D example of the GP posterior is illustrated in Figure 1. The two stars represent the observations which
the GP was fitted to, giving rise to the posterior mean function and the predictive variance as depicted by the
solid line and shaded region respectively. In this figure, the shaded region shows the values ±σ away from the
posterior mean function. The objective function is represented by the dashed line. The global minimum lies at
x = 0, with local minima at around x = ±6.3. The GP posterior can be interpreted as follows: at any point
x∗ in the feasible region, the GP posterior predicts that the corresponding objective function value is normally
distributed with mean µ(x∗) and variance σ2(x∗)

1, as given by Eq. (8) and (9). In other words, for given point x∗
in Figure 1, the GP posterior predicts the objective function value to be normally distributed about µ(x∗), with
the shaded region showing the values ±σ away from the mean. The observations provide information about the
objective function at those points, thus reducing the predictive variance of the GP around those points. However,
as the objective function being modeled is noisy, there is still a non-zero variance around the observations. In
regions far from the observations, the GP posterior mean function tends towards the prior mean function, which
is zero in this example.

3.1.2 Acquisition Function.

Given the posterior mean function and the predictive variance of the GP posterior, the acquisition function is
used to identify the next point to evaluate. The role of the acquisition function is to balance exploitation and
exploration when selecting the next evaluation point. In a minimization (resp. maximization) problem, selecting
a point with a small (resp. large) posterior mean function value corresponds to exploitation, while selecting a
point with a large predictive variance represents exploration. The acquisition function, therefore, is a function of
both µ(x∗) and σ2(x∗). The next point to evaluate is then chosen by maximizing the acquisition function.

Several acquisition functions with analytical expressions have been proposed in the BO literature, including
the probability of improvement (Kushner 1964), expected improvement (Jones et al. 1998, Mockus et al. 1978)
and upper confidence bound (Srinivas et al. 2009). In this work, we work with the expected improvement (EI)

1Note that the subscript t are frequently omitted from µ(x∗) and σ2(x∗) for simplicity, and it can be assumed to include all
available observations unless otherwise stated.
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acquisition function, which is defined as follows (for a minimization problem):

EI(x∗) = E [max{0, fmin − f(x∗)}] (10)

= (fmin − µ(x∗))Φ(Z) + σ(x∗)φ(Z), (11)

where Z =
fmin − µ(x∗)

σ(x∗)
(12)

where fmin denotes the smallest objective function estimate of all the observations; φ(·) and Φ(·) in Eq. (11)
denote the probability density function (pdf) and cumulative distribution function (cdf) of the standard normal
distribution respectively. In Eq. (11), the first component can be interpreted as the exploitation component, as
it is proportional to the possible improvement in objective function value fmin − µ(x∗). The second component
can then be interpreted as the exploration component, as it is proportional to the predictive variance. To select
the next point to evaluate xt+1, we solve the following maximization problem:

xt+1 = arg max
x∗

EI(x∗). (13)

EI was chosen as the acquisition function as it is more commonly used than probability of improvements,
and also it does not require an additional tuning parameter, unlike the upper confidence bound acquisition
function (Snoek et al. 2012). When working with noisy observations, the EI acquisition function may not be
properly defined since the true distribution of f is not known (see e.g. Section 5.1 of Frazier (2018)). There exist
alternative acquisition functions that may be more suitable for noisy observations, such as the knowledge gradient
function (Frazier et al. 2009, Wu and Frazier 2016), the entropy search function (Hennig and Schuler 2012) and
the predictive entropy search function (Hernández-Lobato et al. 2014). However, these alternative acquisition
functions do not have analytical closed forms. This makes them computationally costly to evaluate, compared to
the EI function. Furthermore, the convergence guarantees of the acquisition functions hold only in asymptotic
cases. Since we are considering short-term performance, the convergence guarantees are less applicable in our
case.

The EI acquisition function is also depicted in the 1-D example in Figure 1 by the dotted line. As can be seen
in the figure, the EI acquisition function has the largest values where there is a combination of a small posterior
mean function value and a large predictive variance. In particular, the largest EI values lie in the region x < 0
in this iteration, where there are currently no observations, indicating that the algorithm should explore in this
region. Furthermore, the EI value is zero around x = 3.5, since the GP posterior predicts that a minimum is very
unlikely to lie in that area. The predictive variance around x = 3.5 is also close to zero.

The optimization of the EI acquisition function is commonly carried out using DIRECT (Jones et al. 1993),
which is a deterministic, derivative-free optimizer. Given that we are considering stochastic problems, this means
that DIRECT is not a suitable optimizer. Since the analytical expression of the gradient of EI is available (Frean
and Boyle 2008, Section 3), we use a multistart gradient ascent approach to maximize the acquisition function
(Hutter et al. 2011, Shahriari et al. 2015). More specifically, we use the MultiStart routine in Matlab, along with
fmincon as the solver.

3.1.3 Algorithm.

The general BO algorithm is summarized in Algorithm 12. The GP hyperparameters are first initialized. A set
of random initial points in the feasible region are then sampled and evaluated, providing the initial observations
for fitting the GP posterior. At every iteration, the GP hyperparameters are fitted to the observations through
maximum likelihood estimation (for details, see Section 5.4.1 of Williams and Rasmussen (2006)). Then, the
acquisition function, which is based on the GP posterior (see Eq. (10)-(12)), is maximized to select the next point
for evaluation, as mentioned in Section 3.1.2. This is repeated until the optimization budget of T iterations is
exceeded.

3.2 Gaussian Process with Problem-Specific Information

For some optimization problems, we may have access to problem-specific prior information or have some prior
beliefs about the shape of the objective function. For instance, in transportation problems involving an urban
road network, the underlying road network would be known beforehand. Hence, it may be possible to derive an

2In this work, the GP models were implemented using the GPML package for Matlab (Rasmussen and Nickisch 2018).
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Algorithm 1: Bayesian optimization

1. Initialization

(a) Choose a prior mean function and a covariance function

(b) Initialize GP hyperparameters: α, β, σ2
0 , `, `

fA

(if applicable; see Section 3.2 for more

details about the hyperparameters α, β and `f
A

)

(c) Randomly sample t0 points x1:t0 from the feasible region and evaluate through

simulation to obtain f1:t0

2. Optimization
for t = t0, . . . , T − 1

(a) Update GP hyperparameters through maximum likelihood estimation based on the

data {x1:t, f1;t} (see e.g. Section 5.4.1 of Williams and Rasmussen (2006))

(b) Fit the GP to the data {x1:t, f1;t} to obtain the posterior mean function µt(x∗) (Eq. (8))

and the predictive variance σ2
t (x∗) (Eq. (9))

(c) Identify the next point to evaluate xt+1 by maximizing the acquisition function

(Eq. (13))

(d) Evaluate the point through simulation to obtain ft+1

analytical transportation model fA(·) that approximates or correlates with the objective function. In this section,
we show how fA can be incorporated in the GP prior mean function (Section 3.2.1) and the covariance function
(Section 3.2.2) in order to enable efficient high-dimensional BO.

3.2.1 Prior Mean Function.

As mentioned in Section 3.1.1, a constant prior mean is typically chosen when there is no available prior infor-
mation about the objective function:

m(x) = β, (14)

where β is a constant. In the case of a zero prior mean function, β is taken to be 0.
However, given an analytical transportation model fA(·) that approximates the objective function, it would

be natural to use it in the prior mean function:

m(x) = αfA(x), (15)

where α is a scaling constant that can be fitted according to the data. Assuming fA approximates the objective
function well, it can inform the acquisition function about the locations of possible optima through the posterior
mean function as shown in Eq. (8). This thus allows BO to exploit the problem-specific prior information to
efficiently identify good solutions even at higher dimensions. This is illustrated using a 1-D example in Section 4.3.

3.2.2 Covariance Function.

The choice of the covariance function can give rise to more interesting GP posteriors. As shown by Eq. (8) and
(9), the choice of the covariance function affects both the posterior mean function and the predictive variance.
The covariance between two points, as defined by the covariance function, represents how correlated the two
points are believed to be. Standard covariance functions, such as the squared exponential covariance function
(Eq. (3)), work with the assumption that points close to one another have similar objective function values (i.e.
the objective function is smooth). In the case of the squared exponential covariance function, the exponential
term ensures that k(xi,xj)→ σ2

0 when xi and xj are close to each other in Euclidean distance, and k(xi,xj)→ 0
when the Euclidean distance between xi and xj becomes large. In fact, this is a necessary condition for BO to
converge to the optimum (Mockus 1994).
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However, other than assuming a smooth objective function, the standard covariance functions do not exploit
any problem structure at all. Here, we propose a covariance function that is able to incorporate problem-specific
prior information in the form of an analytical transportation model fA to efficiently tackle high-dimensional BO
problems:

kf
A

(xi,xj) = σ2
0 exp

(
−‖xi − xj‖22

2`2

)
exp

[
−
(
fA(xi)− fA(xj)

)2
2(`fA)2

]
, (16)

where `f
A

is the analytical transportation model length-scale. The analytical transportation model-based co-

variance function kf
A

differs from the standard squared exponential covariance function kSE in Eq. (3) in the
addition of a second exponential component. This additional exponential component uses the difference between
the fA values of the two points to further attenuate the covariance between the two points. Put differently, the
difference in fA values is used as an additional distance measure, which incorporates the problem-specific prior
information, to determine how correlated the two points are. This means that for a given Euclidean distance, we
are incorporating the prior belief that two points with similar fA values have high covariance and vice versa. At
the same time, the first exponential component in Eq. (16) ensures, that when the Euclidean distance between
the two points is large, the covariance between the two points goes to zero, reflecting the uncertainty of making

predictions in regions without any observations. The hyperparameter `f
A

effectively determines how big of a
difference in fA values is required for the two points to become uncorrelated.

The squared exponential covariance function forms the basis for kf
A

in Eq. (16), allowing us to directly

compare the performance of kf
A

and kSE to determine the added value of using the analytical transportation
model in the covariance function. However, we would like to emphasize that the analytical transportation model
component can be added to any other covariance functions, such as the Matérn covariance functions. Hence, the
proposed method of incorporating problem-specific information in the covariance function is highly generalizable.

The proposed covariance function kf
A

is able to encourage exploration of parts of the feasible region with
different analytical transportation model values than previously evaluated points (i.e. observations). As seen in
Eq. (9), the predictive variance is reduced in regions with non-zero covariance to previously evaluated points. Using
kSE as the covariance function means that only the regions with nearby observations in the Euclidean distance

sense have reduced posterior variance. However, using kf
A

as the covariance function allows for points that are
further away from observations to have greater covariance if they have similar fA values as the previously evaluated
points, thus resulting in a smaller predictive variance. Hence, with the predictive variance being attenuated based
on the difference in fA values compared to those of the previously evaluated points, there is a larger predictive
variance in regions with fA values that are different from those of the evaluated points. Since the acquisition
function (Eq. (11)) assigns greater values to regions with high predictive variance, exploration in these regions are

encouraged. The effect of using kf
A

as the covariance function is illustrated using a 1-D problem in Section 4.3.

The effect of using kf
A

is particularly significant in higher dimensional problems where there is a limited
number of observations. The limited number of observations results in a poor coverage of the high-dimensional
feasible region. This makes it difficult to model the objective function well if using a GP prior with no problem-

specific prior information. However, by using kf
A

as the covariance function, both the posterior mean function
and the predictive variance will have access to fA (see Eq. (8) and (9)). This helps to tackle the two problems
which plague conventional high-dimensional BO to some extent. First, while the limited number of observations
provides a poor coverage of the high-dimensional feasible region, it provides a decent coverage of the 1-D space
of fA difference. In regions with no nearby observations by Euclidean distance, there could still be significant
covariance between points with similar fA values as the previously evaluated points. This helps to inform the
GP on possible objective function values in the unexplored regions, based on similarities in fA values. Second,

when using kf
A

as the covariance function, the posterior mean function and the predictive variance are informed
on possible objective function values in unexplored regions. This means the posterior mean function and the
predictive variance are less likely to be constants in the unexplored regions. As a result, the acquisition function
would have fewer flat regions, allowing it to be more easily optimized using a gradient ascent approach. Hence,
this can allow BO to be effective in high-dimensional problems. Section 4.3 provides an illustration of how the

use of kf
A

as the covariance function can help to tackle the problems of conventional high-dimensional BO.

9



3.2.3 Computational Trade-off

It should be mentioned that the use of an analytical transportation model in the GP involves a computational
trade-off. The analytical transportation model approximation fA requires some computational time to evaluate
each time. Hence, it’s use in the prior mean function (Eq. (15)) (resp. the covariance function (Eq. (16))) could
lead to greater computational runtimes compared to using the constant prior mean function (Eq. (14)) (resp.
the standard squared exponential covariance (Eq. (3))). The increase in computational runtime also depends on
the analytical transportation model being used. Hence, the chosen model should ideally be quick to evaluate. In
general, the increase in computational runtimes could be worthwhile if the use of fA in the prior mean function
and/or the covariance function can lead to more efficient optimization.

4 Validation and Illustration

In this section, we validate the proposed method of incorporating problem-specific prior information in the prior
mean function and the covariance function of the GP works using the Griewank function as the objective function.
We first define the Griewank function and introduce the optimization problem in Section 4.1. Then, we present
the different benchmark methods in Section 4.2. In Section 4.3, we validate the proposed method using the 1-D
Griewank function. Following that, we show that the proposed method is able to tackle high-dimensional BO
using a 100-D Griewank function for illustration in Section 4.4. In Section 4.5, we illustrate the effects that biases
in the analytical model can have on the optimization performance.

4.1 Griewank Function

The D-dimensional Griewank function (Griewank 1981) is defined as follows:

g(x) = 1 +

D∑
i=1

x2
i

4000
−

D∏
i=1

cos

(
xi√
i

)
, (17)

where x = [x1, . . . , xD]T . The Griewank function was chosen, as it is a continuous and non-convex function with
multiple local minima – properties which are present in many objective functions of optimization problems in
transportation. Furthermore, the Griewank function is easily generalizable to any number of dimensions, allowing
us to test the proposed method on problems of any dimension.

To make it a stochastic problem, we add i.i.d. Gaussian noise ε with mean 0 and variance 0.01 to the Griewank
function g(x) (Eq. (18)). In addition, we set the feasible region as [−10, 10]D (Eq. (20)). The noisy D-dimensional
Griewank function optimization problem that we consider in this section is summarized by Eq. (18)-(20):

min
x
f(x) = g(x) + ε, (18)

subject to ε ∼N (0, 0.01), (19)

xi ∈ [−10, 10] ∀i = 1, . . . , D. (20)

4.2 Benchmark Methods

In this problem, we assume there is prior knowledge that the objective function (Eq. (18)) has a quadratic
component. Based on this, we choose a quadratic model as the analytical model:

fA(x) = ‖x‖22. (21)

Note that fA in Eq. (21) is not an accurate model of the Griewank function, in the sense that it does not reflect
the undulations and local minima. However, it still has significant correlation with the Griewank function, by
following the same general trend. In fact, the minimum of fA is perfectly aligned with the global minimum of
the Griewank function at x = 0.

To evaluate our proposed method, we make use of 4 different GP priors for the Griewank function optimization
problems, as well as the case study in Section 5. The 4 different GP priors are summarized in Table 1, and they
differ according to whether (i) the prior mean function and (ii) the covariance function are based on the analytical
model fA or not. The first column of Table 1 defines the names of the 4 GP priors used. The second column
indicates whether the prior mean function is based on the analytical model as defined in Eq. (15). If not, the
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constant prior mean in Eq. (14) is used. The third column indicates whether the covariance function is based
on the analytical model as shown in Eq. (16). If it is not, the standard squared exponential covariance function
given in Eq. (3) is used.

The Standard GP prior represents a general-purpose GP prior, which does not use any problem-specific
information, and is taken as a benchmark for the other 3 proposed GP priors that make use of problem-specific
information in the prior mean function and/or the covariance function. The comparison between Standard and
Proposed-Covariance (resp. Proposed-Mean) allows us to evaluate the effect of using a problem-specific covariance
function (resp. prior mean function). Comparing Proposed-Combined with Proposed-Covariance (resp. Proposed-
Mean) serves to evaluate the added value of using the problem-specific information in the prior mean function
(resp. covariance function).

4.3 1-D Griewank Function

Using the 1-D Griewank function, we first illustrate how the choice of GP prior affects the posterior when fitted
to initial observations. For this example, 2 initial observations (Step 1c of Algorithm 1) were provided for fitting
the GP posteriors, with the same pair of initial observations used across all 4 GP priors. For each observation,
the objective function estimate was obtained by taking the mean of 4 simulations (i.e. 4 random draws of the
noisy Griewank function in Eq. (18)). The fitting of the GP posterior was done by updating the GP hyperparam-
eters through maximum likelihood estimation (see Step 2a of Algorithm 1), using the minimize function (which
minimizes the negative log marginal likelihood) found in the GPML package for Matlab (Rasmussen and Nickisch
2018).

Figure 2 plots the 4 different GP posteriors after fitting to the initial observations, along with the objective
function and their respective EI acquisition functions. In each plot, the x-axis represents the feasible region for
this 1-D case, while the left and right y-axes represent the objective function value and EI value respectively. The
initial observations are depicted by the two markers, with the marker styles and colors differing based on the GP
prior. The marker styles and colors are consistent with those used in subsequent figures comparing the different
GP priors. The posterior mean function is represented by the red solid line, while the shaded region represents
the predictive variance and shows the values ±σ away from the posterior mean function. The objective function is
depicted by the blue dashed line, with the global minimum occurring at x = 0 along with two other local minima
in this 1-D case. The EI acquisition function for this iteration is shown by the orange dotted line.

The GP posterior for Standard is shown in Figure 2a. It can be observed that in the regions close to
the observation, the posterior mean function models the objective function relatively well, while reducing the
predictive variance around the observations. Correspondingly, the EI function is assigned a high value where
there is a combination of a small posterior mean function value and large predictive variance, and vice versa.
However, in the region with no observations (i.e. x < 0), we see that the posterior mean function simply tends
towards the constant prior mean function, while the predictive variance goes towards σ2

0 . Since the posterior
mean function and the predictive variance are essentially constant in the region x < 0, the EI function is also flat.
As mentioned in Section 2, the acquisition function can have many flat regions and can be multimodal. This is
especially true in higher dimensions. Hence, Figure 2a shows why it can be difficult to find the global maximum
of the acquisition function for high-dimensional problems.

In the case of Proposed-Covariance (Figure 2b), the GP posterior mean function and the predictive variance
are no longer constant in the region x < 0 despite the lack of observations, unlike Standard. In fact, the GP
posterior predicts similar objective function values for points with similar fA values, which can be seen by noting
that the posterior mean function is almost symmetric about x = 0 and that fA is a symmetric function about
x = 0. Note that even though Proposed-Covariance does not use an informative prior mean function, its posterior

mean function is affected by kf
A

(see Eq. (8)). Hence, this explains the symmetry in the posterior mean function.

Table 1: GP Priors

Name Prior Mean Function Covariance Function
Based on analytical model? Based on analytical model?

Standard
Proposed-Covariance X
Proposed-Mean X
Proposed-Combined X X
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(a) Standard (b) Proposed-Covariance

(c) Proposed-Mean (d) Proposed-Combined

Figure 2: GP posteriors fitted to 2 initial observations for the 1-D Griewank function.

In addition, the predictive variance around points with similar fA values as the previously evaluated points were
also reduced as expected. As a result of the behavior of the posterior mean function and the predictive variance
in the region without observations (x < 0), the EI function is no longer flat, which is important when using a
gradient-ascent approach when maximizing the acquisition function.

Proposed-Mean (Figure 2c) is similar to Standard, in that the posterior mean function tends towards the prior
mean function in the region x < 0 which has no observations. The only difference is that the prior mean function
in Proposed-Mean is m(x) = x2, thus explaining why the posterior mean function increases quadratically as x
becomes more negative in x < 0. At the same time, the predictive variance goes towards σ2

0 , since the covariance
function in Proposed-Mean does not exploit any problem-specific information. As a result of the non-constant
posterior mean function in the region x < 0, the EI function is also no longer flat, unlike the case for Standard.

The GP posterior of Proposed-Combined (Figure 2d) is similar to that of Proposed-Covariance, in that similar
objective function values are predicted for points with similar fA, due to the use of the problem-specific covariance
function. The predictive variance is also reduced for points with similar fA values as the previously evaluated
points. The main difference between the GP posteriors of Proposed-Combined and Proposed-Covariance is that
the posterior mean function of Proposed-Combined has an additional quadratic component, leading to larger µ
values for points further away from x = 0 as compared to that of Proposed-Covariance. This difference is also
reflected in the EI function, where the peaks at around x = ±6 and x = ±10 for Proposed-Combined are smaller
than those in Proposed-Covariance. In fact, the EI peak near x = ±10 is smaller than the one near x = ±6 for
Proposed-Combined, unlike Proposed-Covariance. This shows how fA in the prior mean function can bias the
posterior mean function, thus affecting the EI function. If fA is a good approximation of the objective function,
this could allow the optimization problem to solved more quickly.

The illustrations of the GP posteriors for the 4 different priors in Figure 2 shows how problem-specific infor-
mation in the form of an analytical model can help when used in the prior mean function and/or the covariance

12



Figure 3: Optimization performance of the different GP priors for the 1-D Griewank function problem.

function, by making the EI function less flat. In particular, the use of kf
A

as the covariance function in Proposed-
Covariance and Proposed-Combined allows the GP model to more efficiently model the objective function using
fewer observations, by taking advantage of the correlation between fA and the objective function. As a conse-

quence, the kf
A

covariance function encourages the exploration of points with different fA values from those of
the previously evaluated points to further improve the model of the objective function. Hence, this is how the

kf
A

covariance function can make high-dimensional BO more efficient.
Furthermore, it should also be noted that the quadratic component in the objective function is relatively

weak compared to the sinusoidal component – the weight of the cosine term is much greater than the quadratic
term (see Eq. (17)). The quadratic model fA captures only the quadratic trend, but does not accurately model

the sinusoidal component of the objective function. However, as seen in Figures 2b and 2d, the kf
A

covariance
function still allows the correlation between fA and the objective function to be exploited when modeling the
objective function. In particular, it infers that the objective function is symmetric about x = 0 based on fA.
Hence, this suggests that models that capture a general trend in the objective function are sufficient. They do
not need to accurately model the objective function. This opens the door for more models to be used as fA in
other problems.

Next, we look at the optimization performance using the 4 different GP priors. After obtaining the 2 initial
observations, we continue with the Optimization step (Step 2) of Algorithm 1. At every iteration, a new point is
identified by maximizing the EI acquisition function, and the objective function estimate of that point is taken as
the mean of 4 simulations. In addition, the best solution at the end of each iteration is identified and simulated
2 more times, and the objective function estimate is updated as the mean of all the simulations for that solution
up to that iteration. This is so as to account for the noise and obtain a more accurate objective function estimate
of the current best solution. The algorithm stops when the computational budget is reached. For this example,
the computational budget was taken to be 30 iterations in total, including the 2 initial observations (i.e. 28
optimization iterations).

Figure 3 shows the performance of BO with the 4 different GP priors. The x-axis shows the optimization
iteration number, while the y-axis shows the objective function estimate of the best solution at a given iteration.
The optimization algorithm was run 3 times for each GP prior. Each line in Figure 3 depicts the mean of the
best objective function estimate of the 3 runs, while the shaded regions represent the values ±1 standard error
away from the mean. Standard corresponds to the black dash-dot line, Proposed-Covariance to the blue dashed
line, Proposed-Mean to the magenta dotted line, and Proposed-Combined to the green solid line. In this plot,
the sooner the curve reaches a y-value of 0, the more efficient the GP prior is for optimization.

From Figure 3, we observe that all 4 GP priors were able to find a solution with objective function value close
to the global minimum (i.e. 0), as expected for a 1-D problem. Hence, this shows that the 4 GP priors works at low
dimensions. Furthermore, Figure 3 also shows that the GP priors that make use of problem-specific information in
the prior mean function and/or the covariance function (i.e. Proposed-Covariance, Proposed-Mean and Proposed-
Combined) were able to identify a solution with objective function value close to the global minimum more quickly
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Figure 4: Optimization performance of the different GP priors for the 100-D Griewank function problem.

than Standard. Hence, even for a 1-D problem, having access to problem-specific information makes BO more
efficient.

4.4 100-D Griewank Function

We next consider the 100-D noisy Griewank function as the objective function. This can be considered a high-
dimensional problem in the context of BO, which has typically been limited to problems of less than 10 dimensions
(Wang et al. 2016, Kandasamy et al. 2015).

For this 100-D problem, Algorithm 1 was implemented with 10 initial observations provided for fitting the GP
posteriors, and a computational budget of 400 iterations (i.e. 390 optimization iterations). The set of 10 initial
observations were sampled uniformly at random from the feasible region, with the same set of 10 observations
used across the 4 different GP priors. Similar to the 1-D problem, for each observation, the objective function
estimate was obtained by taking the mean of 4 simulations (i.e. 4 random draws of the noisy Griewank function in
Eq. (18)). In addition, at every iteration, the best solution at the end of each optimization iteration is identified
and simulated 2 more times, and the objective function estimate is updated as the mean of all the simulations
for that solution up to that iteration. However, instead of updating the GP hyperparameters at every iteration
(Step 2a of Algorithm 1), the hyperparameters were kept fixed throughout the optimization run as it was observed
that this resulted in better optimization performance (see Appendix B for details on hyperparameter selection).
The poorer optimization performance when the GP hyperparameters were updated was likely due to the maximum
likelihood estimation having trouble finding a good set of hyperparameter values, resulting in large fluctuations
in the estimated hyperparameter values at each iteration.

The BO performance of the 4 different GP priors are illustrated in Figure 4. Each line in Figure 4 depicts
the mean of the best objective function estimate of the 3 runs, while the shaded regions represent the values
±1 standard error away from the mean. As can be seen from Figure 4, the best solution identified by Standard
had an objective function value of about 1.3, and it was unable to find a solution close to the minimum within
the limited computational budget. This is expected given the high-dimensional nature of the problem, and no
problem-specific prior information was provided in the prior for Standard. Proposed-Mean outperformed the
solutions of Standard, but was unable to find a solution close to the global minimum. On the other hand,

Proposed-Covariance and Proposed-Combined, which make use of the kf
A

as the covariance function, were able
to consistently find a solution close to the minimum of 0 within 75 iterations. Hence, this shows the effectiveness
of using the problem-specific information in the covariance function for BO in a high-dimensional setting. In
addition, Proposed-Combined was able to find a solution close to the minimum faster than Proposed-Covariance,
suggesting that the additional access to the problem-specific information in its prior mean function does make
the optimization more efficient.

The effectiveness of the kf
A

covariance function in finding solutions with objective function values close to
the global minimum of 0 can be attributed to its ability to get the BO algorithm to explore the fA-space (i.e.
evaluate points with different fA values from previously evaluated points). By exploring the fA-space, the the
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algorithm would eventually be able to find a solution with objective function value close to the global minimum,
especially if the minimum of fA coincides with the global minimum of the objective function, and the fA value
at the global minimum is unique (i.e. fA = 0 does not occur anywhere else in the feasible region). As illustrated

by the 1-D Griewank function example, using the kf
A

covariance function (Figures 2b and 2d) results in the
posterior GP predicting similar objective function values for points with similar fA values. At the same time,
the predictive variance is also reduced for points with similar fA values as the previously evaluated points. As
a result, points with different fA values from the previously evaluated points have greater predictive variances,
which naturally encourages exploration for these points.

The amount of exploration in the fA-space done by the 4 different GP methods, along with the corresponding
objective function values f , is shown in Figure 5. Each row of plots represent one of the 4 different GP priors.
The left column of Figure 5 consists of 2-D histograms illustrating the distribution of fA values (x-axis) and the
corresponding f values (y-axis) of the evaluated points. Each histogram shows the distributions for the different
GP priors. The histograms were plotted using data aggregated over 3 algorithm runs (i.e. 400 × 3 = 1200
observations). In each histogram plot, the color of the bin represents the number of observations that fall within
that bin, with a lighter color meaning a greater number of observations. Note that the scale of the color bar
differs for each GP prior.

The right column of Figure 5 plots the fA values (x-axis) and the corresponding f values (y-axis) for every
observation, aggregated over 3 algorithm runs. The contour lines further represent the 2-D empirical cumulative
distribution function (ecdf) of fA and f based on the observations, which is defined as

ecdf(fA, f) =
1

N
× |{(fAi , fi) : fAi ≤ fA, fi ≤ f}|, (22)

where N is the total number of observations (i.e. 1200), and | · | denotes the cardinality of a set. In words, the
ecdf, as defined in Eq. (22), at a given point (fA

′
, f
′
) is the fraction of observations that have fA and f values

less than or equal to fA
′

and f
′

respectively. In the plots, the contour lines denote the 2-D ecdf in steps of 0.1
(i.e. going from one contour line to the next in the increasing contour direction indicates a gain in ecdf of 0.1
and vice versa). In other words, the space between 2 adjacent contour lines contains 10% of the total number
of observations. Hence, the 2-D ecdf contour lines help to better visualize the distribution of observations in the
plots. The histogram (left column) and ecdf (right column) of Figure 5 present the same 2-D distribution of
observations in different ways. However, the ecdf does it without having to discretize (i.e. bin) the fA and f
values. Hence, subsequent results (Figures 7 and 11) will be presented using the 2-D ecdf.

From Figure 5, it can be seen that the observations of Proposed-Covariance and Proposed-Combined (Fig-
ures 5d and 5h respectively) cover a much larger range of fA values than those of Standard and Proposed-Mean

(Figures 5b and 5f respectively), showing that the use of the kf
A

covariance function does indeed encourage
exploration in the fA-space. Note that the fA can also be viewed as a 1-D projection of x. Hence, exploration
in the fA-space can be used a proxy to visualize exploration in the high-dimensional x-space.

Furthermore, since the minimum of fA coincides with the minimum of f and the fA value at the minimum
is unique in this problem, Proposed-Covariance and Proposed-Combined can easily find solutions with f close
to 0 when exploring in regions with fA values close to 0, as shown by the observations in the lower left corner

of Figures 5d and 5h. On the other hand, Standard and Proposed-Mean, which do not use the kf
A

covariance
function, do not even explore regions with fA values below 200. This can reduce their chances of finding solutions

with f values close to 0. Therefore, Figure 5 helps to show how the kf
A

helps to tackle high-dimensional problems.

4.5 100-D Griewank Function with New Types of Biases

In choosing the analytical model fA for the Griewank function problem, we picked a quadratic model (Eq. (21))
such that the minimum of the quadratic model lies at the same position as the global minimum of the Griewank
function (i.e. x = 0), which resulted in very efficient optimization for Proposed-Covariance and Proposed-
Combined. However, in real-life applications, it is highly unlikely that the chosen analytical model would have
an optimum that perfectly aligns with the optimum of the objective function. Here, we further consider scenarios
where there are more biases in fA in modeling the objective function to see if there is still added value in using
a model with biases in the prior mean function and/or covariance. The different types of biases in fA that we
consider are:

• Inverted (i.e. fA(x) ← −fA(x)): The analytical model is inverted so that it is a completely inaccurate
model of the objective function. Instead, the inverted model is now anti-correlated with the objective
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(a) Standard (Histogram) (b) Standard (2-D ecdf)

(c) Proposed-Covariance (Histogram) (d) Proposed-Covariance (2-D ecdf)

(e) Proposed-Mean (Histogram) (f) Proposed-Mean (2-D ecdf)

(g) Proposed-Combined (Histogram) (h) Proposed-Combined (2-D ecdf)

Figure 5: Histograms and 2-D empirical cumulative distribution functions illustrating exploration in fA-space
and the corresponding objective function values.

function, with its maximum coinciding with the objective function minimum at x = 0. This illustrates the
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(a) Standard (b) Proposed-Covariance

(c) Proposed-Mean (d) Proposed-Combined

Figure 6: Optimization performance of the different GP priors for the 100-D Griewank function, when bias is
introduced to fA.

case where the analytical model is inversely biased in modeling the objective function, but is still able to
provide information through (anti-)correlation.

• Shifted (i.e. fA(x) ← fA(x− 1)): The analytical model is shifted in the x-space, so that the minimum
of the model lies at x = 1 instead. This illustrates the case where the minimum of fA and the global
minimum of the objective function no longer coincide, leading to a reduction in correlation between fA and
the objective function.

• Shifted-Inverted (i.e. fA(x)← −fA(x− 1)): The analytical model is first shifted in the x-space, before
being inverted. This means that the maximum of fA lies at x = 1, and does not coincide with the global
minimum of the objective function. While fA still has some negative correlation with the objective function,
the anti-correlation would not be as strong as that of the Inverted model, illustrating the case where fA

has a combination of the two biases above.

The optimization performance of the 4 different GP priors using the analytical models with the different
biases are plotted in Figure 6. Each plot represents one of the 4 different GP priors. In each plot, each curve
represents the mean of the best objective function estimate of 3 optimization run, with the respective shaded
region depicting ±1 standard error away from the mean. The black solid line represents the Original fA, the blue
dashed line shows the Inverted fA, the magenta dotted line indicates the Shifted fA, and the green dash-dot line
corresponds to the Shifted-Inverted fA.

Standard does not make use of fA in the prior, hence the 4 curves in Figure 6a correspond to the optimization
performance of the exact same GP prior, which should result in similar performance, yielding an average best
objective function value of around 1.3 at the end of 390 optimization iterations. Any differences in the 4 curves
are due to randomness during optimization.
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Proposed-Covariance makes use of fA in the covariance function. As can be seen from Figure 6b, Proposed-
Covariance was still able to find a solution with objective function close to 0 when using the Inverted fA, although
it required more iterations on average than when using the Original fA. This shows that Proposed-Covariance can
be less sensitive to inversion bias in fA. However, when using the Shifted fA and Shifted-Inverted fA, Proposed-
Covariance was unable to find a solution with objective function close to 0 within the computational budget.
This shows that as the correlation (or mutual information) between fA and the objective function decreases, the

added value of using kf
A

as the covariance function decreases too.
Proposed-Mean (Figure 6c) uses fA only in the prior mean function. When using the Shifted fA, the op-

timization performance showed a slight deterioration compared to that with the Original fA, illustrating the
impact of using an analytical model, where the minimum does not align with the global minimum of the objective
function, in the prior mean function. Furthermore, as the set of hyperparameter values used is the same as that
used for the Original fA (i.e. α = 0.001), this meant that the prior belief when using the Inverted and Shifted-
Inverted fA was that the objective function behaves like a negative quadratic function. Since this is untrue, the
optimization performance of Proposed-Mean with the Inverted and Shifted-Inverted fA was very poor. While
choosing a suitable set of hyperparameter values would certainly help to improve the results when fA is inverted,
it can be difficult to find the right set of hyperparameter values in practice. Even if we choose to estimate the
hyperparameter values (e.g. though maximum likelihood estimation), the limited number of observations poses
a huge challenge to finding the right set of hyperparameter values for a high-dimensional problem.

Proposed-Combined (Figure 6d) takes advantage of fA in both the prior mean function and the covariance
function. When using the Inverted fA, Proposed-Combined was still able to find a solution with objective function
value close to 0. However, it required about 160 optimization iterations for the mean best objective function value
to reach 0, compared with around 70 when using the Original fA. This larger increase in number of iterations
needed, compared with Proposed-Covariance, can be attributed to the fact that Proposed-Combined uses the
Inverted fA in the prior mean function as well, which makes it a bad prior. However, it was still able to recover,

highlighting the usefulness kf
A

as the covariance function even if fA is biased. When working with the Shifted and
Shifted-Inverted fA, Proposed-Combined was unable to find a solution with objective function value close to 0

within the computational budget. Similar to Proposed-Covariance, this highlights decreased benefits of using kf
A

as the covariance function when the correlation (or mutual information) between fA and the objective function
is reduced. Working with the Shifted fA, Proposed-Combined was able to reach its best mean objective function
value (around 0.8) with just 30 iterations, compared with 200 iterations when working with the Shifted-Inverted
fA. Again, this can be attributed to the inversion of fA and its use in the prior mean function.

From Figure 6, we also see that Proposed-Covariance and Proposed-Combined with the Shifted and Shifted-
Inverted fA still perform better than Standard and Proposed-Mean. Even when working with the Shifted and
Shifted-Inverted fA, Proposed-Covariance and Proposed-Combined were still able to find solutions with objective
function values below 1, while Standard and Proposed-Mean were unable to do so even when working with the

Original fA. This helps to show the effectiveness of the kf
A

covariance function in tackling high-dimensional
problems, even when fA does not perfectly model the objective function.

We next consider the amount of exploration done in the fA-space by each GP prior, along with the correspond-
ing objective function values f , for the different fA models. Even though fA is correlated to f , its minimum may
not coincide with the minimum of f (as in Shifted and Shifted-Inverted). As such, considering fA as a metric
of exploration allows us to see if the different GP priors will search in regions with bigger fA values in their
attempts to minimize f . Figure 7 plots the observations and 2-D ecdfs to illustrate the distribution of fA and f
values explored. Each row of plots represent one of the 4 different GP priors, while each column represents one
of the types of bias in fA. The first column of plots shows the distribution of observations for the Original fA,
and are the exact same plots as the right column of Figure 5. Note that for the Inverted (second column) fA and
Shifted-Inverted (last column) fA, the definition of the 2-D ecdf was modified to highlight the anti-correlation
between fA and f . The modified 2-D ecdf definition is

ecdf(fA, f) =
1

N
× |{(fAi , fi) : fAi ≥ fA, fi ≤ f}|, (23)

where the first “≤” sign was changed to “≥”. This changes the direction of the contour lines, so that the ecdf
value increases as fA becomes more negative, allowing the distribution of points to be visualized more easily.
Otherwise, the interpretation of the 2-D ecdf for Inverted fA and Shifted-Inverted fA remain the same. For
Shifted fA (third column), the 2-D ecdf as defined by Eq. (22) is used.

We first focus on the Standard GP prior (first row of Figure 7). As previously mentioned, Standard does
not make use of fA in the prior, hence the exploration behavior should be independent of the type of bias
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Figure 7: 2-D empirical cumulative distribution functions illustrating exploration in fA-space when bias is intro-
duced to fA.

in fA. As such the distribution of observations for Standard using the Inverted fA and Shifted-Inverted fA

(Figures 7b and 7d) are essentially similar, and are mirror images of Figure 7a. The different distribution of
observations seen in Figure 7c for the Shifted fA can be attributed to randomness, where the BO run managed
to identify a relatively good solution with f value around 1.1, leading to a cluster of observations around that
region. In all cases, Standard does not explore as large a range of fA values as compared to Proposed-Covariance
or Proposed-Combined.

Moving on to the Inverted fA (second column of Figure 7), we first note the inverse relationship between fA and
f , due to the anti-correlation between Inverted fA and f . We also see that Proposed-Covariance and Proposed-
Combined (Figures 7f and 7n respectively) explored a much larger range of fA values, compared to Standard

and Proposed-Mean (Figures 7b and 7j respectively). Similar to the case with Original fA, the kf
A

covariance
function encourages exploration in the fA-space, regardless of the sign and magnitude of the correlation between
fA and f . Moreover, the maximum of the Inverted fA (i.e. fA = 0) is aligned with the minimum of f , with the
maximum fA value occurring at a unique point (i.e. x = 0), hence Proposed-Covariance and Proposed-Combined
were still able to efficiently find solutions with f close to 0 when exploring in regions with fA values close to 0.
In contrast, Proposed-Mean (Figure 7j) only uses Inverted fA in its prior mean function, which is completely
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inaccurate in describing the objective function. As a result of the misinformation in the prior, Proposed-Mean
tends to explore regions with smaller (i.e. more negative) fA values and greater f values, compared to when
using the Original fA. At the same time, the range of fA values explored by Proposed-Mean (-3033 to -4659) is
smaller when using the Inverted fA (264 to 4544), compared to Original fA.

The Shifted fA model (third column of Figure 7) illustrates the case when the minimum of fA no longer aligns
with the global minimum of f . With Shifted fA, the global minimum has an fA value of 10, which is an fA value
that no longer occurs at a unique point. In other words, there are other points, which are not the global minimum,

in the feasible region with fA values of 10 as well. While the kf
A

covariance function in Proposed-Covariance and
Proposed-Combined still ensures that they still explore a large range of fA values, as shown in Figures 7g and 7o,
this implies that exploring the fA-space does not always lead to finding the global minimum of f . However, from
Figure 7g, Proposed-Covariance seemed to have allocated more simulation budget to exploring the region with
fA values close to 0, as compared to Proposed-Combined where the observations are more uniformly distributed
(Figure 7o). This could have led to the better optimization performance for Proposed-Covariance (mean of 0.665)
compared to Proposed-Combined (mean of 0.838) when using Shifted fA, as shown in Figure 6. In the case of
Proposed-Mean (Figure 7k), the exploration behavior when using the Shifted fA is similar to that when using the
Original fA – Proposed-Mean does not explore as large a range of fA values as compared to Proposed-Covariance
and Proposed-Combined. As a result, this also limits the best f value it can find to above 1.

Working with the Shifted-Inverted fA model (last column of Figure 7) results in similar exploration behavior
as when using the Inverted fA model for the 4 different GP priors. Proposed-Covariance and Proposed-Combined
(Figures 7h and 7p respectively) continue to explore a much larger range of fA values as compared to Standard
and Proposed-Mean (Figures 7d and 7l). However, as maximum of Shifted-Inverted fA does not coincide with
the global minimum of f , the global minimum has an fA value of -10 which is an fA value that does not occur
at a unique point. This thus implies that simply exploring the fA-space does not guarantee that the minimum of
f will be found. In the case of Proposed-Mean, the inversed relationship of the Shifted-Inverted fA and f again
resulted in Proposed-Mean exploring regions with smaller (more negative) fA values, along with a smaller range
of fA values compared to Original fA and Shifted fA.

In general, the experiments in this section has shown that the use of kf
A

as the covariance function encourages
exploration in the fA-space regardless of biases in fA when modeling the objective function. To efficiently identify
the minimum in the objective function, the optimum in fA should ideally coincide with the minimum in the
objective function, and the fA value at the objective function minimum should occur only at a unique point in
the feasible region. However, as the Shifted and Shifted-Inverted cases show, the correlation between fA and

f can still improve high-dimensional BO performance when using the kf
A

covariance function, compared to a
general-purpose squared exponential covariance function, highlighting the robustness of the proposed method.

5 Case Study: Midtown Manhattan Traffic Signal Control

5.1 Traffic Signal Optimization Problem

In this case study, we apply our proposed method to a high-dimensional fixed time traffic signal optimization
problem for the large-scale area of Midtown Manhattan (MTM) in New York City. For a review of traffic signal
optimization terminology, see Osorio (2010, Appendix A, pages 119-121). In fixed time signal control, the signal
plan is cyclic (i.e. periodic) with a fixed cycle time (i.e. the time required to complete one sequence of signals).
The decision variables in this problem are the green splits (i.e. normalized green times) of each signal phase of
each intersection in the network. Other control variables, such as the offsets, stage structure, cycle times, etc., are
predetermined and kept constant. The notation used for formulation of the traffic signal optimization problem is
given below:

The formulation of the problem is then given by:

min
x
f(x, z; p) = E[F (x, z; p)] (24)

subject to
∑
j∈P(`)

xj =
c` − d`
c`

, ∀` ∈ I (25)

x ≥ xLB . (26)

The objective function for this case study (Eq. (24)) is the expected travel time of vehicles, as evaluated by a
stochastic traffic simulator whose output is represented by the random variable F . The objective function depends
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f SO objective function (expected travel time of vehicles in the road network);
F random variable denoting the travel time of vehicles in the road network;
xj green split of signal phase j (decision variable);
x vector of all green splits (decision vector);
z vector of endogenous simulation variables.

Exogenous problem parameters:
c` cycle time of intersection `;
d` fixed cycle time of intersection `;
xLB vector of minimal green splits;
p vector of exogenous simulation parameters;
I set of signal controlled intersection indices;
P(`) set of signal phase indices of intersection `.

on a vector of exogenous parameters p, which accounts for the road network topology and fixed lane attributes
(e.g. lane length, maximum speed, grade), for instance. The endogenous simulation variables z represents, for
example, route choice decisions, as well as link-level and network-level performance metrics like travel times,
speeds, densities, delays, etc. For more details about how the objective function is computed from the stochastic
traffic simulator, we refer the reader to Appendix D.

The feasible region of x is defined by the constraints (25) and (26). Eq. (25) represents the cycle time
constraint, which states that for a given intersection, the sum of green splits must be equal to the proportion
of cycle time that can be optimized (i.e. not fixed). In practice, it is common to assign fixed amounts of time
to certain traffic phases, typically for safety considerations and to comply with local transportation regulations.
For instance, a fixed amount of the cycle time is typically assigned to all-red periods, where the signal is red
for all traffic movements between some signal phases for safety reasons. Eq. (26) represents the lower bounds of
the green splits, where the minimum green splits are typically determined by the local transportation authorities
based on safety considerations.

For the traffic signal optimization problem, the underlying road network of the MTM area is known beforehand.
Hence, this problem-specific prior information can be used to inform the GP prior through the prior mean function
and/or the covariance function. To do this, we model the road network using a finite capacity queueing network
model (Osorio and Chong 2015, Eq. 6) (see Appendix C for more details).

The MTM area being simulated in this case study is demarcated by a rectangle in the map shown in Figure 8.
In this problem, we simulate traffic from 3pm - 6pm, and optimize the signal plans for the peak hour of 5pm -
6pm. We control a total of 97 signalized intersections, with 259 green splits (i.e. decision variables). Due to the
linear cycle time equality constraint (Eq. (25)), this can be considered a 162-D problem (i.e. 259 − 97 = 162),
making it high-dimensional in the field of BO.

The MTM simulation model is implemented using the Aimsun software (TSS-Transport Simulation Systems
2015). It consists of a total of 698 roads, 2756 lanes and 444 intersection. The complete network topology of the
simulation model is illustrated in Figure 9. During the simulated interval of 5pm - 6pm, the expected demand
over 29,000 trips per hour, distributed across more than 3500 origin-destination pairs. In this simulation model,
the minimum green time that can be assigned to each signal phase was 6 seconds. Hence, the corresponding
elements in the vector of minimum green splits xLB (Eq. (26)) are the ratio of 6 seconds to the cycle time of the
intersection that the green split belongs to.

5.2 Experimental Set-Up

In this case study, BO was implemented as described in Algorithm 1, with 10 initial observations provided to fit
the GP posteriors. The computational budget was taken as 55 iterations (i.e. 45 optimization iterations). As
with the Griewank function experiments in Section 4, the objective function estimate was obtained by taking the
mean of 4 simulations, with 2 additional simulations of the best solution at the end of each optimization iteration.
This leads to a total of 310 simulation runs, 40 of which are spent on the 10 initial observations.

For each GP prior, we consider 3 distinct initial sets, each containing the 10 initial observations used to fit the
GP posteriors at the start of the BO run. The 10 initial observations in each set were obtained by sampling within
the feasible region (as defined by Eq. (25) and (26)) uniformly at random using the code of Stafford (2006), and
taking the mean of 4 simulation runs for each point. In addition, one of the uniformly random points in Initial
Set 3 was replaced by an existing signal plan, which was previously used by the New York City Department of
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Figure 8: Map of Midtown Manhattan with the simulated area demarcated by a rectangle (MapQuest.com, Inc
2018).

Figure 9: Midtown Manhattan model in Aimsun.
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(a) Initial Set 1

(b) Initial Set 2 (c) Initial Set 3

Figure 10: Mean performance at a given iteration achieved by the different GP priors.

Transportation (NYCDOT) for the MTM area. This existing signal plan is known to perform well, and hence was
included in Initial Set 3 to investigate how BO will be affected when the initial set contains a solution with good
performance. We also use the existing plan as a benchmark for the performance of the signal plans proposed by
BO with the 4 different GP priors. For more implementation details, we refer the reader to Appendix D.

5.3 Results

We compare the optimization performance of the 4 different GP priors in Figure 10. Each plot in Figure 10 shows
a comparison of the optimization performance for a different initial set. The x-axis represents the optimization
iteration (i.e. does not count the 10 initial observations), while the y-axis shows the expected travel time (objective
function value). In each plot, each line depicts the mean of the best solution at a given iteration for 5 BO runs,
with the shaded regions showing the values ±1 standard error away from the mean. The mean travel time and its
standard error based on 50 simulations using the existing plan is also indicated in each plot by the thin red dashed
line and the red shaded region. This allows for comparison with the performance of BO with the 4 different GP
priors.

We further tested if the differences in optimization performance of the different GP priors were statistically
significant, by performing a one-sided paired t-test based on the mean performance of the 5 BO runs for each
initial set. The results of the t-test are given in Table 2. For each row in the table, the null hypothesis assumes
that the first GP prior (in Column 1) obtained a mean performance that is worse than or equal to the mean
performance of the second GP prior (in Column 1). In contrast, the alternative hypothesis states that the first
GP prior obtained a mean performance that is better than the second GP prior. For instance, the last row
of Table 2 tests the alternative hypothesis that Proposed-Covariance obtained a better mean performance than
Proposed-Combined. Both the t-statistics and p-values are shown for each test and for all 3 initial sets. Each
t-test is considered at the 10% level of significance. With 4 degrees of freedom, the corresponding critical value of
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Table 2: One-sided paired t-test results

Test
Initial Set 1 Initial Set 2 Initial Set 3

t-statistic p-value t-statistic p-value t-statistic p-value
Proposed-Covariance vs.
Standard

-2.546 0.0318 -3.625 0.0111 -0.851 0.221

Proposed-Mean vs.
Standard

-0.369 0.365 -1.956 0.0611 0.577 0.702

Proposed-Combined vs.
Standard

-1.675 0.0846 -3.024 0.0195 0.521 0.685

Proposed-Covariance vs.
Proposed-Mean

-2.943 0.0211 -0.448 0.339 -1.020 0.183

Proposed-Combined vs.
Proposed-Mean

-2.687 0.0274 -0.690 0.264 0.176 0.565

Proposed-Covariance vs.
Proposed-Combined

-1.738 0.0786 0.095 0.536 -1.759 0.0767

the t-statistic is -1.533. The t-tests with t-statistics smaller than the critical value, which are displayed in bold,
have their null hypotheses rejected.

We first consider Initial Set 1 (Figure 10a). Of all the GP priors, Proposed-Covariance (blue dashed line) was
able to identify the best point on average after expending the computational budget. In fact, Proposed-Covariance
was statistically significantly better than all of the other 3 GP priors as seen in Table 2. It identified solutions
that reduced the expected travel time by 3.2% on average compared to the existing plan. Proposed-Combined
(green solid line) obtained solutions with the next best performance, and is statistically significantly better than
Proposed-Mean and Standard. This is followed by Proposed-Mean (magenta dotted line) and then Standard
(black dash-dot line). However, the mean performance of Proposed-Mean is not statistically better than that
of Standard. While Proposed-Covariance was the best GP prior based on results at the end of the BO runs,
Figure 10a also shows that it is the slowest in finding solutions better than the existing plan. Proposed-Mean
and Proposed-Combined were actually able to identify solutions better than the existing plan much more quickly
(5 and 2 iterations respectively) than both Proposed-Covariance (15 iterations). Standard was unable to identify
solutions that are significantly better than the existing plan. This suggests that fA in the prior mean function is
being exploited to find good solutions quickly.

For Initial Set 2 (Figure 10b), Proposed-Covariance, Proposed-Mean and Proposed-Combined were all able
to outperform Standard at the end of the BO runs. The differences in performance compared to Standard
were statistically significant at the 10% level of significance as seen in Table 2, highlighting the usefulness of
incorporating problem-specific information in the GP prior. Proposed-Covariance also registered a 3.3% reduction
in expected travel time on average relative to the existing plan. However, there is no significant difference between
Proposed-Covariance, Proposed-Mean and Proposed-Combined. Furthermore, as with Initial Set 1, Proposed-
Mean and Proposed-Combined were again able to quickly identify solutions better than the existing plan (1 and 3
iterations respectively), compared to Proposed-Covariance (18 iterations). Standard was again unable to identify
solutions that are significantly better than the existing plan.

Initial Set 3 (Figure 10c) contains the existing plan as one of the initial points. It is the point with the best
performance in the initial set. The reason the starting mean performance of all the GP priors is better than
that of the existing plan (i.e. the red dashed line) is due to chance. With a signal plan with good performance
already in the initial set, Standard was able to perform well in this case, as it simply explored around the vicinity
of the existing plan in the feasible region to find better solutions (more evidence of this behavior is shown later
in Figures 11 and 12). As a result, Standard was able to find solutions by the end of the BO runs which was
statistically on par with those obtained by Proposed-Covariance, Proposed-Mean and Proposed-Combined, as
shown by the results of the t-tests in Table 2. Hence, this shows that if the initial set contains an observation
with good performance, the importance of access to problem-specific prior information may be diminished. In
this case, Proposed-Covariance reduced the expected travel time by 2.9% on average, compared to the existing
plan.

In general, Figure 10 showed that there is value in using the kf
A

covariance function, as it is able to consistently
identify solutions with better or equal performance than GP priors using the squared exponential covariance
function. In addition, the results also show that placing fA in the prior mean function allows BO to quickly
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Figure 11: 2-D empirical cumulative distribution functions illustrating exploration in fA-space.

find good solutions within a few iterations. However, as Figures 10a and 10c show, placing fA in the prior mean
function could limit the best solution found in the long run.

Figure 11 shows the fA values and the corresponding f values for all evaluated points. It provides insights
into the amount of exploration done in the fA-space by each GP prior. In each plot of Figure 11, the fA and f
values of every simulated point is illustrated, along with the 2-D ecdf to provide a visualization of the distribution
of fA and f values explored. The 2-D ecdf here is computed based on Eq. (22). Each row of plots represent one
of the 4 different GP priors being tested, while each column shows the results for a different initial set.

Focusing first on Initial Set 1 (first column of Figure 11), we see that Standard explored quite a large range of
fA values (2.79 - 6.11) compared to Proposed-Mean and Proposed-Combined. However, the f values that it found
were not as good, with the best f value being 11.22. In contrast, Proposed-Covariance also explored a large range
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of fA values (2.80 - 5.96), but the solutions it identified included more with smaller f values, particularly around
the region with fA values between 3 and 4.5. This shows that the minimum of fA may not necessarily coincide

with the minimum of f , but the kf
A

covariance function can still help to identify solutions with smaller f values.
Proposed-Mean and Proposed-Combined explored a smaller range of fA values than Standard and Proposed-
Covariance. In fact, most of the evaluated points had fA values less than 3.5, indicating that the Proposed-Mean
and Proposed-Combined were exploiting the use of fA in the prior mean function with the assumption that fA

and f are strongly correlated.
Moving on to Initial Set 2 (second column of Figure 11), Standard seemed to have found a point with good

performance (with fA value of 2.79) and kept exploring around the vicinity, which explains the cluster of evaluated
points with fA values of about 2.8. Further evidence of this behavior is shown later in Figure 12. Proposed-
Covariance again explored a large range of fA values (3.36 - 7.85). Furthermore, it identified many points with

large fA but small f values, providing further evidence that the kf
A

covariance function is very helpful in the
search for small f values. From Figure 11h, Proposed-Mean mainly focused on finding points with smaller fA

again. On the other hand, Proposed-Combined explored a larger range of fA values compared to Proposed-Mean
this time. However, the main focus was still on the regions with smaller fA values.

For Initial Set 3 (third column of Figure 11), which contains the existing plan as one of the initial observations,
Standard spent most of the computational budget exploring points close to the existing plan with the hope of
finding better solutions. However, it also explored other regions with larger fA values, but the points explored
with large fA values also had large f values. Proposed-Covariance, Proposed-Mean and Proposed-Combined
similarly explored only in the vicinity of the existing plan (see Figure 12 for more evidence). As a result, their
exploration was limited to just a small range of fA values. This could be the result of having an observation with
good performance in the initial set, which could affect the hyperparameter values obtained through maximum
likelihood estimation, such that the effect of fA in the covariance function on exploration in the fA-space is
diminished. Hence, this shows the sensitivity of BO to the initial set.

To visualize the distribution of the observations in the feasible region (i.e. the space of feasible signal plans),
we made use of multidimensional scaling (MDS, see e.g. Cox and Cox (2008)) to project the points onto a 2-D
space. Simply put, MDS is a projection technique that retains the original pairwise distances between points as
much as possible. Here, we used the Matlab function cmdscale to compute the projection based on the pairwise
Euclidean distances between the observations. Figure 12 illustrates the positions of the observations relative to
one another in this 2-D space. The contour lines in the plots indicate the objective function value at a given
point. Each column represents a different initial set, while each row shows a different GP prior. Note that the
observations from all the GP priors and all 3 initial sets were used to define the MDS 2-D space, hence the
2-D space and contour line layout in each plot are the same. This allows for direct comparison across the plots
for different initial sets. Furthermore, we note that the relative errors of representing the observations in just 2
dimensions are naturally large (92%, 81% and 82% for Initial Sets 1,2 and 3 respectively). Hence, we do not use
the MDS plots to draw independent conclusions, but merely use it to substantiate other claims.

Comparing across the 3 columns in Figure 12, we see that the regions explored in the MDS 2-D projected
space can be be quite different for each initial set. This supports the notion that BO is sensitive to the initial set
used. The first and second columns of Figure 12 even show that the Proposed-Covariance explores significantly
different regions of the 2-D space compared to Proposed-Mean and Proposed-Combined, highlighting that the
different GP priors react differently to the initial sets as expected. The first column of Figure 12 also supports the
explanation for the cluster of observations by Standard with fA values around 2.8 as seen in Figure 11b – there
is a cluster of observations by Standard around (−0.25,−0.3) in Figure 12b, suggesting that Standard got stuck
in a local minimum, and hence explored only in the vicinity. For Initial Set 3, we previously observed that all 4
GP priors explored only an area with small fA values, suggesting that they were exploring only in the vicinity
of the existing plan. The third column of Figure 12 reinforces this claim, as it shows most of the observations
surrounding the initial observation at (−0.30,−0.07) which corresponds to the existing plan.

6 Conclusion

In this paper, we showed how problem-specific information in the form of analytical transportation models can
be used for exploration, in addition to exploitation, to tackle high-dimensional BO efficiently. Exploitation of
the problem-specific information can be achieved by using the analytical transportation model in the prior mean
function of the GP, allowing the algorithm to identify good solutions more quickly. This is true when compared
to using a non-informative prior mean function. On top of this, we showed that incorporating an analytical
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Figure 12: Multidimensional scaling 2-D projections of all observations in the feasible region.

transportation model in the GP covariance function can encourage exploration in areas of the feasible region
with different analytical transportation model values from points which have already been evaluated. This allows
better solutions to be found even if the analytical transportation model is not an accurate representation of the
objective function. In fact, having the analytical transportation model in the GP covariance function resulted in
better optimization performance than not providing any problem-specific information in the covariance function.
This is true regardless of whether the analytical transportation model was being exploited in the prior mean
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function.
At the same time, incorporating the problem-specific prior information in the covariance function (as op-

posed to the prior mean function only) helped the optimization be more robust to inaccuracies in the analytical
transportation model. This opens up the possibility of using models which are less accurate but are still (anti-
)correlated to the objective function. For instance, the analytical transportation model does not even have to be
modeling the objective function itself, but instead it could be modeling another quantity which is (anti-)correlated
to the objective function (e.g. network throughput is anticorrelated with the expected travel time).

Also, while the proposed analytical model-based covariance function was demonstrated on a transportation
case study problem, we would like to emphasize the generality of the method, as it is not limited to just trans-
portation optimization or SO problems. The proposed covariance function can be applied to any problem type in
general where the objective function is expensive to evaluate, and where there is problem-specific prior information
available in the form of an analytical model.

Despite the effectiveness of the proposed covariance function for high-dimensional BO, we note that it can be
difficult to find a good set of hyperparameter values at times. This is especially so with limited observations in
high-dimensional settings. Furthermore, the initial set used to fit the GP posterior at the start of the BO run can
affect the estimated hyperparameter values, and has a strong impact on the eventual outcome. As such, more
studies can be done to identify ways to better estimate hyperparameter values that can allow for more efficient
optimization to take place.

We also found that BO was sensitive to the set of initial points used to fit the GP at the start of the
optimization process. This was regardless of whether problem-specific prior information was incorporated in the
GP prior mean function and/or the covariance function or not. Hence, work could be done to better sample for
initial points while keeping computational costs in check, especially for high-dimensional BO problems.

Another area that can be studied further is the choice of functional forms for the analytical transportation
model-based covariance function. For the purpose of this paper, we focused on using a squared exponential form
of the difference between analytical model values of two points in the proposed covariance function. However,
other functional forms might provide a better fit of the GP posterior to the objective function and hence more
efficient optimization.

As part of our ongoing research, we are investigating possible ways to extend the use of analytical trans-
portation model-based covariance functions and BO to high-dimensional dynamic problems. In transportation,
it is common to encounter dynamic optimization problems, where the objective function and decision variables
are time-dependent, as practitioners try to account for the spatiotemporal dynamics of travelers in the system.
To tackle dynamic problems, the GP posterior model would have to account for time variations of the objective
function. Due to the difficulties of modeling a high-dimensional dynamic problem accurately, we believe that BO,
together with the use of problem-specific prior information, can be a good option for solving such simulation-based
optimization problems.
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A List of Notation Used

f objective function;
fA approximate analytical model of the objective function;
F random variable denoting the stochastic output of a simulation run;
x vector of decision variables;
z vector of endogenous simulation variables;
p vector of deterministic exogenous parameters;
χ feasible region;
D number of dimensions of the feasible region;
ε i.i.d. Gaussian noise;

GP notation:
t number of observations;
t0 number of initial observations;
T budget for number of objective function evaluations;
m prior mean function of a GP;
m vector of prior mean function values;
β prior mean constant;
α analytical model scaling constant;
k covariance function of a GP;
k vector of covariance function values;
K covariance matrix;
kSE squared exponential covariance function;
kfA analytical model-based covariance function;
µ posterior (predictive) mean function of a GP;
σ2 posterior (predictive) variance of a GP;
σ2

0 covariance amplitude;
` covariance characteristic length-scale;
`fA analytical model length-scale;
τ2 variance of Gaussian noise;
I identity matrix;

Signal control problem exogenous parameters:
c` cycle time of intersection `;
d` fixed cycle time of intersection `;
xLB vector of minimal green splits;
I set of signal controlled intersection indices;
P(`) set of signal phase indices of intersection `.

B Implementation Details for Validation with 100-D Griewank Func-
tion

To identify the fixed set of hyperparameter values for use in Section 4.4, we executed a grid search to find the best
set of hyperparameter values. The hyperparameter values tested can be found in Table 3. The first column of the
table identifies the GP prior, while the second and third columns shows the values tested for the mean function
hyperparameter (β for Standard and Proposed-Covariance, and α for Proposed-Mean and Proposed-Combined).
The fourth and fifth columns show the values tested for the covariance amplitude and characteristic length-scale
respectively. The last column represents the analytical model length-scale values, which is applicable only to
the GP priors with kfA as the covariance function (i.e. Proposed-Covariance and Proposed-Combined). The
values in bold represent the best set of fixed hyperparameter values for each GP prior. This same set of fixed
hyperparameter values were used in Section 4.5 as well.

The tested values shown in Table 3 were chosen to represent different orders of magnitude, with the goal of
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Table 3: Fixed Hyperparameter Values Tested

GP Prior α β σ2
0 ` `fA

Standard – {0, 0.1, 1} {0.5, 5} {10, 100, 1000} –
Proposed-Covariance – {0, 0.1, 1} {0.5, 5} {10, 100, 1000} {0.1, 1, 10}
Proposed-Mean {0.001, 0.01, 0.1} – {0.5, 5} {10, 100, 1000} –
Proposed-Combined {0.001, 0.01, 0.1} – {0.5, 5} {10, 100, 1000} {0.1, 1, 10}

finding hyperparameter values of the right order of magnitude. As such, the best set of hyperparameter values
found may not be the optimal set, as no further fine-tuning of the hyperparameter values was done. For each GP
prior, the best set of hyperparameters was chosen by comparing the mean of the best objective function estimate
of 3 optimization runs (as in Figure 3) for every set. The set that required the fewest number of iterations to
reach within 0.05 of the global minimum value of 0 is taken as the best.

C Queueing Network Model

In Section 5, we model the road network using a finite capacity queueing network model (Osorio and Chong
2015, Eq. 6), which accounts for vehicular spillbacks (when downstream lanes are full, thus blocking traffic flow
from upstream lanes) through the queueing theoretic concept of blocking. In this queueing network model, each
lane in the network is represented by a finite space capacity M/M/1/k queue, where k denotes the finite space
capacity of that lane. The green splits of the traffic signal optimization problem are then related to the queueing
network model, through their effect on the service rates of the queues at the corresponding intersections (see
Eq. 18 of Osorio and Chong (2015)). Based on the queueing network model, the analytical approximation fA of
the objective function (i.e. expected travel time) can be derived (Osorio and Chong 2015, Eq. 11).

In this Appendix, we define the the queueing network model and show how it can provide an analytical
approximation of the objective function. For more details about the queueing network model and the derivation of
the analytical approximation of the objective function, we refer the reader to Osorio and Chong (2015, Sections 3,
4 and Appendix A). We use the notation of Osorio and Chong (2015) in this Appendix, where the index i refers
to a given queue:

γi external arrival rate;
λeff
i effective arrival rate;
µi service rate;
ρeff
i effective traffic intensity;
ki upper bound of the queue length;
Ni total number of vehicles in queue i;
P (Ni = ki) probability of queue i being full;
pij transition probability from queue i to queue j;
Di set of downstream queues of queue i.

The queuing network model is given by the following system of equations:

λeff
i = γi

(
1− P (Ni = ki)

)
+
∑
j

pjiλj (27a)

ρeff
i =

λeff
i

µi
+
( ∑
j∈Di

pijP (Nj = kj)
)( ∑

j∈Di

ρeff
j

)
(27b)

P (Ni = ki) =
1− ρeff

i

1− (ρeff
i )ki+1

(ρeff
i )ki . (27c)

Eq. (27a) is a flow conservation equation relating the demand rate of queue i (left hand side of the equality) to the
sum of the demand rate of vehicle trips that start in queue i (first term of the right hand side) and of the demand
rate of vehicle trips that arise from upstream queues (second term of the right hand side). More specifically, the
demand rate for trips that start in queue i is represented by γi, and the term (1−P (Ni = ki)) enforces that trips
can only start in queue i if it is not full. Eq. (27b) defines the traffic intensity. The first term of the right hand
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side is the traffic intensity when the queue is not full (i.e., when there is no spillback). The second term accounts
for the impact in queue i due to spillbacks from its downstream queues. Eq. (27c) gives the expression of the
spillback probability (i.e., the blocking probability) as defined for an M/M/1/ki queue.

The endogenous variables of the above system of equations are related to the decision vector (the green split
vector x) by the following linear equations:

µi = s

ei +
∑

j∈P2(i)

xj

 ∀i ∈ L, (28)

where s denotes an exogenous scalar that represents the saturation flow rate (i.e., maximum queue discharge
rate), and ei is an exogenous parameter that represents the ratio of fixed green time to cycle time for signalized
queue i. Eq. (28) states that the service rate of a signalized queue i is given by the saturation rate scaled by
the proportion of cycle time the queue has a green phase. This proportion is given by the term in parenthesis,
which depends on the fixed (i.e., not optimized) time (term ei) and the variable time (summation term, which
represents the sum of the green splits of the signal phases of queue i).

The expected travel time (i.e. the objective function) can be approximated by the queueing network model.
This is done by applying Little’s law (Little 1961) to the entire network:

fA(x) =

∑
i E[Ni]∑

i γi(1− P (Ni = ki))
(29)

where E[Ni] represents the expected number of vehicles in lane i. The numerator of Eq. (29) represents the
expected number of vehicles in the entire network, while the denominator represents the expected arrival rate
to the network. The ratio of these two quantities provide the expected travel time of the network according to
Little’s law.

The expected number of vehicles in lane i can be computed approximately as such:

E[Ni] = ρeff
i

(
1

1− ρeff
i

− (ki + 1)(ρeff
i )ki

1− (ρeff
i )ki+1

)
(30)

The derivation of Eq. (30) can be found in Appendix A of Osorio and Chong (2015).

D Case Study Implementation Details

The case study objective function (expected travel time) in Eq. (24) is evaluated by running simulations of the
MTM model in Aimsun. In each simulation run, the travel time of each vehicle is taken as the total amount of
time that vehicle spent in the network. For vehicles which manage to complete their trips between 5pm - 6pm,
the total amount of time spent in the network is the difference between the time they enter the network and
the time they exit the network. For vehicles which do not complete their trips by the end of the simulation (i.e.
6:00pm), their total time spent in the network are counted as the difference between the time they entered the
network and 6:00pm. The reason for counting the time spent in the network by vehicles that have not completed
their trips is to ensure that gridlocks in the network are penalized. The expected travel time is then taken to be
the mean amount of time that each vehicle spends in the network.

Unlike the optimization of the 100-D Griewank function in Section 4.4, we decided to optimize the hyper-
parameters at every iteration, due to the difficulties involved in identifying a good set of fixed hyperparameters
when working with a computational-expensive simulator. To prevent the hyperparameter values from diverging,
we optimize the hyperparameters by performing maximum likelihood estimation using a fixed, pre-selected set of
hyperparameter values (Table 4) as the initial point at every 5th iteration (i.e. 5th, 10th, 15th, etc.). For all other
iterations, the maximum likelihood estimation initial point was taken as the optimized hyperparameter values
from the previous iteration.
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