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Abstract

The increasing computational cost of evaluating a traffic simulation has led to the need for more efficient algo-
rithms when tackling high-dimensional simulation-based optimization (SO) problems. An approach to solving
SO problems efficiently involves incorporating problem-specific structural information in the optimization algo-
rithm. Alternatively, this problem-specific structural information can also be used for sampling points to be used
in the optimization algorithm. This paper proposes an inverse cumulative distribution function (cdf) sampling
mechanism to make use of problem-specific structural information in the form of an analytical model to efficiently
sample for points with good performance. The resulting sampling distribution assigns greater probability to
sampling points with better predicted performance. This allows the inverse cdf sampling mechanism to exploit
prior information while still allowing for nonzero probability of sampling any point. We validate the inverse cdf
sampling mechanism on a toy network. We then explore whether problem-specific structural information should
be used in the sampling mechanism and/or the optimization algorithm when tackling a high-dimensional traffic
signal control problem in Midtown Manhattan. The results show that the use of inverse cdf sampling mechanism
as part of an optimization framework can help to quickly and efficiently identify solutions with good performance.

1 Introduction

Simulation-based urban traffic and mobility models have been extensively used by stakeholders to evaluate the
performance of traffic management strategies (e.g. signal control, congestion pricing), as well as to evaluate new
algorithms (e.g. dispatch algorithms in ridesharing) before releasing it to production (Greenhall 2016). These
simulators can embed detailed traveler behavior models of departure time choice, mode choice, route choice and
response to real-time traffic information. Moreover, stochastic models can account for uncertainty in demand and
in supply. For instance, the behavioral models above may be specified as disaggregate probabilistic models, such
as discrete choice models. Furthermore, the simulators are able to model the interactions of a large number of
travelers to a resolution that analytical models are unable to. A review of traffic simulation models is given in
Barceló (2010).

As the resolution, quantity and availability of urban mobility data increases, so does the interest by both public
and private stakeholders in developing detailed, high-resolution mobility models. Moreover, with the increase in
connectivity and real-time responsiveness of our mobility systems, comes an increase in the spatial dependency
of network or link performance. This calls for an increase in the spatial coverage of the network to be studied.
Stakeholders are shifting from performing a local (e.g., an arterial, a couple of intersections, a neighborhood)
analysis to studying the impact across a full city or metropolitan area. This simultaneous increase in both the
model resolution and its spatial coverage brings numerous methodological challenges.
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In this work, we focus on the use of stochastic simulation-based models for continuous optimization problems.
We consider continuous simulation-based optimization (SO) algorithms. Some examples within the transporta-
tion field where continuous simulation-based optimization (SO) problems are encountered include traffic signal
optimization (Osorio and Bierlaire 2013, Osorio and Nanduri 2015a,b, Osorio and Chong 2015, Chong and Osorio
2018), origin-destination (OD) matrix calibration (Lu et al. 2015, Tympakianaki et al. 2015, Zhang et al. 2017),
and congestion pricing (Osorio and Atasoy 2017).

The main challenges in urban mobility SO are twofold. The first challenge is the computational cost of eval-
uating the simulator. Computational cost increases with both the model resolution and with the spatial network
coverage. Hence, the new generation of mobility models is increasingly costly to evaluate. Furthermore, since we
are considering stochastic models, multiple simulation replications are required to obtain accurate objective func-
tion estimates, leading to even more demanding computation requirements. The increase in computing power has
been outpaced by our interest in developing more detailed and larger-scale models. While the amount of available
computing power has increased dramatically over the years, it is still insufficient for applying SO to “the control
of complex stochastic systems” (Xu et al. 2016). At the same time, while real-time simulation of smart cities may
become possible in the near future (Alibaba DAMO Academy 2019), further increases in computing power and
improvements in computational efficiency are still required to make it possible to perform SO in real-time.

The second challenge involves dealing with high-dimensional optimization problems. Some problems, such as
OD calibration, are naturally high-dimensional, with the number of dimensions (e.g. OD pairs) reaching into the
thousands (Lu et al. 2015, Zhang et al. 2017). In other cases, such as urban traffic signal optimization, we are
interested in jointly optimizing the network performance across an entire urban network, which leads to a high-
dimensional optimization problem (Osorio and Chong 2015). With more variables to optimize, the computational
resources required to solve the optimization problem is likely to increase.

This paper focuses on the above 2 challenges, with the goal of contributing to the design of SO algorithms
that are both computationally efficient and suitable for high-dimensional SO problems. In this work, the focus is
on continuous SO problems.

The computational inefficiency of large-scale high-resolution mobility simulators has limited their use for
optimization. Most often, the use of the simulators is limited to what-if analysis (i.e., evaluation of a set of
predetermined solutions) (Ben-Akiva et al. 2003). The most common approaches in the transportation SO
literature include general-purpose algorithms such as genetic algorithms (Jin et al. 2017, Sebastiani et al. 2016,
Paz et al. 2015, Stevanovic et al. 2008, Teklu et al. 2007, Yun and Park 2006) and simultaneous perturbation
stochastic approximation (SPSA) (Tympakianaki et al. 2018, 2015, Lu et al. 2015, Balakrishna and Koutsopoulos
2008). The advantage of these algorithms is their broad generality (i.e., they are not limited to a specific type of
transportation problems (e.g., congestion pricing)). However, this generality comes with a lack of computational
efficiency. The underlying algorithms are designed based on asymptotic properties and exploit little to no problem
structure information. Hence, they are not designed to be used within tight computational budgets, yet that is
how they are used for any large-scale problem instance or case study.

However, work has also been done to address the inefficiencies of the general-purpose algorithms in trans-
portation SO problems. For instance, Jin et al. (2017) proposed the use of an archive-based genetic algorithm
in a stochastic traffic signal control optimization framework. The archive-based genetic algorithm differs from
traditional genetic algorithms by storing the globally elite genes in an external archive, thus helping it achieve
faster convergence. Several extensions to the original SPSA algorithm have also been proposed to achieve faster
convergence (Tympakianaki et al. 2015, Lu et al. 2015).

To design computationally efficient SO algorithms, one recent line of work has been to complement general-
purpose SO algorithms with problem-specific structural information. The problem-specific structural information
provides prior knowledge of the problem, even before any simulation is done, thus helping to quickly identify some
good solutions. This can come in the form of analytical models, which provide an approximation of the objective
function (e.g. queueing network model representing a traffic network (Osorio and Bierlaire 2009)).

Metamodel SO algorithms are an example of a class of general-purpose SO algorithms which can be combined
with problem-specific structural information. They have been proposed for various classes of continuous trans-
portation SO problems (Chong and Osorio 2018, Osorio and Chong 2015, Osorio and Nanduri 2015a,b, Osorio
and Bierlaire 2013) and more recently discrete SO problems (Zhou et al. 2018). A metamodel is an analytical
approximation of the unknown SO objective function. The main idea behind this line of work has been to tackle
the SO problem by solving a sequence of analytical optimization problems. More specifically, at every iteration
of the SO algorithm, the SO objective function is replaced with the analytical metamodel and then an analytical
optimization problem, known as metamodel optimization problem, is solved. Computational efficiency is achieved
by formulating metamodels that have problem-specific structural information. More specifically, analytical net-
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work models are formulated and used to approximate the SO objective function (i.e., to derive the metamodel).
The main challenge in this approach is the formulation of an analytical network model that is computationally
efficient and scalable while also being a good approximation of the SO objective function.

However, there are some limitations to this approach. First, when considering tight computational budgets,
the metamodels used across iterations remain similar, and hence, the sequence of analytical optimization problems
solved tend to yield nearby, or even identical, solutions. Second, although analytical models can provide some
problem-specific structural information, they are just approximations of the objective function. More specifically,
the analytical models do not necessarily reflect the shape of the objective function perfectly across the entire
feasible region. This means that the SO algorithm has to be able to account for the inaccuracies in the model.

Alternatively, the problem-specific structural information can be used for sampling for points to be used in
the SO algorithm. More specifically, the analytical model, containing the structural information of the underlying
problem, can be used to construct the sampling distribution in such a way that points with good predicted
performance are sampled with greater probability. This differs from the traditional metamodel SO algorithms
(Osorio and Bierlaire 2013), where the analytical model is used during optimization. Given that solving the
metamodel optimization problem with the analytical model is a computationally intensive task (see e.g., Figure 7
of Osorio and Chong (2015)), it is useful to see if using the analytical information during sampling instead could
help to reduce the overall computational demand.

The analytical model could be used to construct a joint sampling distribution. However, it can be difficult
to draw samples from the joint distribution. Monte Carlo methods, including importance sampling and Markov
chain Monte Carlo methods, are often used to address this problem. In importance sampling, the goal is to
estimate an integral or an expectation value with respect to a target distribution, while reducing the variance
on the estimate. This is achieved by drawing samples from a different proposed distribution which overweights
the important regions, and weighting each sample by the likelihood ratio when estimating the expectation value
(Owen 2013, Chapter 9, pages 3-5). Since the goal of importance sampling is different from the goal of this
work and does not sample according to the target distribution, we will not discuss it in detail. For a review on
importance sampling, we refer the reader to Tokdar and Kass (2010).

Markov chain Monte Carlo (MCMC) is a class of methods for generating samples from a sampling distribution
while exploring the state space using Markov chain mechanism. One of the most popular MCMC methods is
the Metropolis-Hastings algorithm (Metropolis et al. 1953, Hastings 1970). The Metropolis-Hastings algorithm
involves sampling from a proposal distribution (which is easy to sample from) in order to mimic samples drawn
from the target distribution asymptotically. However, the choice of proposal distribution is important in ensuring
the success of algorithm (Andrieu et al. 2003, Section 3.1). If the expressions for the full conditionals of the
target distribution are known, the Gibbs sampler can then be used to draw samples from the target distribution
(Geman and Geman 1984), eliminating the need to specify a proposal distribution. Another drawback of MCMC
methods is the need to discard an initial set of samples, in practice, to avoid starting biases (Andrieu et al. 2003,
Gelman and Shirley 2011). This is also known as the burn-in period or mixing time for the Markov chain to
reach a stationary distribution. To avoid starting biases, Gelman and Shirley (2011) recommends discarding the
first half of the samples. As such, the inefficiencies associated with the burn-in suggests that MCMC may not be
suitable when computational resources are limited.

This study considers the question of whether problem-specific structural information should be used in the
sampling mechanism, in the optimization algorithm, or both for a high-dimensional SO problem. We propose
an inverse cumulative distribution function (cdf) sampling mechanism to make use of problem-specific struc-
tural information in the form of an analytical model (Osorio and Bierlaire 2009, Osorio and Chong 2015) to
efficiently sample for points with good performance in a high-dimensional transportation optimization problem.
This provides a positive correlation between the probability of sampling a particular point and the predicted
performance of the point. In contrast to uniform sampling, which is traditionally used for picking initial points
for optimization, the inverse cdf sampling mechanism attempts to exploit prior information while still allowing
for nonzero probability of sampling any point. Thus, the inverse cdf sampling mechanism should be able to pick
out better optima compared to a uniform sampling method, especially when working with the constraint of a
limited computational budget. In addition, the analytical model gives a global approximation of the objective
function without the need for any simulation evaluations, so this design should be able to achieve good short-term
performance in a high-dimensional problem when used in an optimization framework.

The proposed inverse cdf sampling mechanism thus contributes in the following ways:

• Scalability: The inverse cdf sampling mechanism makes use of an analytical model that consists of a simple
system of equations. The model is linear in the number of links in the network, which allows the inverse
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cdf sampling mechanism to be scaled to high dimensions.

• Efficiency: By exploiting prior information in the form of an analytical model of the traffic network, the
inverse cdf sampling mechanism samples for points with good performance with higher probability so that
solutions with good performance can be found with just a small number of simulation evaluations.

• Broad class of optimization problems: While we demonstrate the use of the inverse cdf sampling
mechanism on a transportation optimization problem, the inverse cdf sampling mechanism can be applied
to other classes of optimization problems, in particular problems with expensive-to-evaluate black-box func-
tions. This is possible as long as there is an analytical model available to provide an approximation of the
objective function.

In the following section, we present the methods used to implement the inverse cdf sampling mechanism. A
validation of the inverse cdf sampling mechanism is done in Section 3. We then test the inverse cdf sampling in
a case study using a model of Mid-town Manhattan for a fixed time traffic signal control problem. The results of
the case study are presented, along with a discussion, in Section 4. Our conclusions are provided in Section 5.

2 Methodology

In this section, we first explain the main idea behind the inverse cdf sampling mechanism in Section 2.1. The
optimization problem of interest is formulated in Section 2.2. Then, Section 2.3 formulates the analytical model
that is used to derive the analytical approximation of the SO objective function. The expressions for the sampling
distributions are then derived from the analytical model. The SO algorithm is summarized in Section 2.4, along
with some implementation details in Section 2.5.

2.1 Main idea

To illustrate the main idea of the proposed approach, we consider a one-dimensional minimization problem for
which we have an analytical approximate expression, denoted fA, of the SO objective function. The goal is to
use fA to define a sampling distribution that assigns high sampling probability to regions (of the feasible region)
with good predicted performance (i.e., low fA values) and low sampling probability to regions with bad predicted
performance (i.e., high fA values). The probability density function (pdf) of such a sampling distribution is given
by:

g(x) =
1

κ0
(κ1 − fA(x)), (1)

where κ1 is a scalar upper bound of fA, which ensures non-negativity of g, and κ0 is a scalar normalization
constant, which ensures that g integrates to 1.

This is graphically illustrated in Figure 1a, where fA (resp. g) is represented by the dashed (resp. solid)
line. In this figure, the magnitude of g is inversely proportional to that of fA. For instance, the interval [a1, a2]
has good predicted performance (i.e., low fA values) and thus high sampling probabilities (high g values). The
inverse holds for interval [a3, a4], which has bad predicted performance and thus low sampling probabilities.

To sample according to the pdf g, we use the inverse transform method, also known as inversion sampling
or Smirnov transform. See for instance Casella and Berger (2002, Section 5.6.1, pages 247-249). The method
assumes that the cumulative distribution function (cdf) of g, denoted G, is invertible, i.e., G−1 exists. It samples
according to G−1(U), where U is a standard uniform random variable (i.e., a uniform distribution with support
[0, 1]).

Given an analytical objective function, it might be possible that G−1 does not exist. Even if it does, G−1

might be numerically difficult to compute. This issue may be encountered in some transportation problems.
However, a possible workaround could be to use an alternative analytical quantity as fA (e.g. average delay),
that exists and is easy to compute, and is also highly correlated with the objective function (e.g. average travel
time). This would still result in higher sampling probabilities in regions with good predicted performance.

Figure 1b depicts the cdf G of the pdf g of Figure 1a. Intuitively, the cdf has steeper gradients in the regions
where the magnitude of g is large. The inverse transform method samples independently from a standard uniform
distribution, places these realizations along the y-axis of Figure 1b, and projects them according to G−1 on the
x-axis. Recall the example above where interval [a1, a2] has better predicted performance than interval [a3, a4].
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(a) (b)

Figure 1: One-dimensional illustration of how the objective function (to be minimized) can be used to construct (a)
the sampling probability density function (pdf), which can be integrated to form (b) the cumulative distribution
function (cdf) so that the probability of sampling is concentrated in regions with better predicted performance.

In Figure 1b sampling from interval [a1, a2] (resp. [a3, a4]) occurs with probability u2 − u1 (resp. u4 − u3).
Since (u2 − u1) > (u4 − u3), the probability of sampling points in [a1, a2] is greater than that of sampling points
in [a3, a4]. In other words, sampling from the interval with better performance ([a1, a2]) occurs with a higher
probability than sampling from the interval with worse performance ([a3, a4]).

The main challenge in our proposed approach is to formulate an approximation function fA that balances
providing: (i) a good approximation of the unknown SO objective function, and (ii) a computationally efficient
and scalable (i.e., suitable for high-dimensions) way of sampling from the feasible region. In this paper, we
consider a specific optimization problem and propose such a formulation.

2.2 Traffic signal control problem

The proposed sampling mechanism is applicable to a broad range of continuous SO problems. To illustrate its
performance, we focus in this paper on one specific problem: a large-scale traffic signal control problem. For
a review of traffic signal control terminology, see Osorio (2010, Appendix A, pages 119-121). The traffic signal
control problem considered here is that of a fixed-time control strategy. A fixed-time signal plan is cyclic (i.e.,
periodic) for a given time interval and a given intersection. The cycle time is the time duration required to
complete one sequence of signals. In this paper, the decision variables are the green splits (i.e., normalized green
times) of each signal phase of each intersection in the network. All other control variables (e.g. offsets, stage
structure, cycle times) are predetermined and assumed fixed. Hereafter, we define signal phase to be the interval
in a cycle assigned to pre-specified traffic movements. The notation used in the formulation of the traffic signal
control problem is given in Table 1.

The problem is formulated as follows:

min
x
f(x, z;θ) = E[F (x, z;θ)] (2)

subject to
∑

j∈P1(`)

xj =
c` − d`
c`

, ∀` ∈ I (3)

x ≥ xLB . (4)

The decision vector x = (x1, . . . , xn) consists of the green splits for each signal phase. The objective function
f (Eq. (2)) is taken to be the expected number of vehicles in the road network. The expectation is defined by
the stochastic traffic simulator, with F representing the corresponding random variable. This objective function
depends on a vector of exogenous simulation parameters θ, which represents, for instance, network topology or
fixed lane attributes (e.g., lane length, maximum lane speed). It also depends on a vector of endogenous simulation
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Table 1: Traffic Signal Control Problem Notation

f SO objective function (expected number of vehicles in the road network);
F random variable denoting the number of vehicles in the road network;
xj green split of signal phase j (decision variable);
x vector of all green splits (decision vector);
z vector of endogenous simulation variables.

Exogenous problem parameters:
c` cycle time of intersection `;
d` fixed cycle time of intersection `;
xLB vector of minimal green splits;
θ vector of exogenous simulation parameters;
n total number of signal phases to be optimized (i.e., dimension of the

decision vector x);
I set of signal controlled intersection indices;
P1(`) set of signal phase indices of intersection `.

variables z, which represents, for instance, link-level and network-level performance metrics (e.g., expected queue-
lengths, speeds, flows, travel times). The right hand side of Eq. (3) represents the proportion of the cycle time
that can be optimized (i.e., that is not fixed). In practice, portions of the cycle time are constrained to be fixed
typically for safety considerations and to comply with local transportation regulations. These fixed portions can
include all-red periods, where the signal is red for all traffic streams at the given intersection, as well as portions
where some traffic streams have short green times (e.g., such as to enable a smooth transition between two signal
phases). Eq. (3) equates, for a given intersection, the proportion of non-fixed cycle time to the total endogenous
green time (i.e., sum of green splits) allocated to that intersection (left hand side). The green splits have lower
bounds (Eq. (4)), which are typically determined based on safety considerations following guidelines from local
transportation authorities.

2.3 Formulation of the analytical sampling distribution

Recall from Eq. (1) that the sampling distribution (g) is defined based on an analytical approximation (fA) of the
simulation-based objective function. In this section, we derive an expression for fA. We represent a given road
network by a finite (space) capacity queueing network. More specifically, each lane i of the network is represented
by a finite (space) capacity queue M/M/1/ki, where ki denotes the finite space capacity of the underlying lane.
By using finite, rather than infinite, space capacity queues, we account for the limited number of cars each lane
can accommodate based on the physical length of the lane. This allows us to model vehicular spillback (i.e.,
when the length of the queue of vehicles exceeds the lane length, and spills back to upstream lanes) through the
queueing theoretic concept of blocking. To introduce this model, we define the notation in Table 2. The index i
refers to a given queue.

Hereafter the terms queue and lane are used interchangeably. For such a network the expected number of
vehicles in the network is defined as:

fA(x) = E
[ m∑
i=1

Ni

]
(5)

=

m∑
i=1

E
[
Ni
]

(6)

=

m∑
i=1

( ρi
1− ρi

− (ki + 1)ρki+1
i

1− ρki+1
i

)
. (7)

In Eq. (5), Ni depends on ρi (as shown in Eq. (7)), and ρi depends on x. The relationship between ρ and x is
explained in Eq. (8) and (9). The transition from Eq. (6) to (7) is based on finite capacity queueing theory. See
for instance, Bocharov et al. (2004, Chapter 3, pages 96-98). A derivation of this expression is given in Osorio
and Chong (2015, Appendix A).

Since the expression of Eq. (7) does not depend explicitly on x, but instead depends on ρ which itself is a
function of x, we simplify the notation by using ρi to refer to ρi(x). We now define the mapping between ρ and
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Table 2: Analytical Model Notation

Endogenous variables of the analytical model:
ρi traffic intensity;
ρ vector of traffic intensities of all queues;
λi arrival (i.e., demand) rate;
Ni number of vehicles in queue i;
P (Ni = ki) probability of queue i being full, also known as the blocking or

spillback probability;
µi service rate;

Exogenous parameters of the analytical model:
m total number of queues in the network;
γi external arrival (i.e., demand) rate;
pij probability of turning from queue i to queue j;
ki space capacity in terms of number of vehicles;
M set of all queues;
Ui set of upstream queues of queue i;
Di set of downstream queues of queue i;
L set of signalized queues;
P2(i) set of signal phase indices of signalized queue i;
P3(i) index of the intersection that queue i leads to;
P4(i) set of signal indices at the intersection that queue i leads to, but not

including the indices of signals which are green in favor of vehicles in
queue i.

x. To do this, we use the analytical network model of Osorio and Chong (2015, Eq. 6), which is defined as the
following system of 3m nonlinear equations:

λi = γi
(
1− P (Ni = ki)

)
+
∑
j∈Ui

pjiλj (8a)

ρi =
λi
µi

+
( ∑
j∈Di

pijP (Nj = kj)
)( ∑

j∈Di

ρj

)
(8b)

P (Ni = ki) =
1− ρi

1− ρki+1
i

ρkii . (8c)

Eq. (8a) is a flow conservation equation relating the demand rate of queue i (left hand side of the equality) to the
sum of the demand rate of vehicle trips that start in queue i (first term of the right hand side) and of the demand
rate of vehicle trips that arise from upstream queues (second term of the right hand side). More specifically, the
demand rate for trips that start in queue i is represented by γi, and the term (1−P (Ni = ki)) enforces that trips
can only start in queue i if it is not full. The turning probabilities (pij) are assumed exogenous, thus the impact
of the signal plans on the travelers route choices is not accounted for. Eq. (8b) defines the traffic intensity. The
first term of the right hand side is the traffic intensity when the queue is not full (i.e., when there is no spillback).
The second term accounts for the impact in queue i due to spillbacks from its downstream queues. Eq. (8c) gives
the expression of the spillback probability (i.e., the blocking probability) as defined for an M/M/1/ki queue (see
for instance, Bocharov et al. (2004, Chapter 3, pages 96-98)).

In Osorio and Chong (2015, Eq. 6), λi (resp. ρi) is denoted λeffi (resp. ρeffi ) and is referred to as the effective
arrival rate (resp. effective traffic intensity). In Osorio and Chong (2015), the effective traffic intensity is used to
approximate the traffic intensity. In this paper, we use the model of Osorio and Chong (2015) and we simplify
the terminology by not using the term effective. We refer the reader to Osorio and Chong (2015, Section 3.3) for
a discussion on how the effective traffic intensity differs from the traffic intensity.

The endogenous variables of the above system of equations are related to the decision vector (the green split
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vector x) by the following linear equations:

µi = s

ei +
∑

j∈P2(i)

xj

 ∀i ∈ L, (9)

where s denotes an exogenous scalar that represents the saturation flow rate (i.e., maximum queue discharge
rate), and ei is an exogenous parameter that represents the ratio of fixed green time to cycle time for signalized
queue i.

Eq. (9) states that the service rate of a signalized queue i is given by the saturation rate scaled by the
proportion of cycle time the queue has a green phase. This proportion is given by the term in parenthesis, which
depends on the fixed (i.e., not optimized) time (term ei) and the variable time (summation term, which represents
the sum of the green splits of the signal phases of queue i).

We combine Eq. (1) and (7) to obtain the joint sampling pdf g, in the ρ space. We use the notation gρ1,...,ρm
to indicate that the joint pdf is with regards to ρ1, . . . , ρm. In other words, we have:

gρ1,...,ρm(ρ1, . . . , ρm) =
1

κ0

(
κ1 − fA(ρ)

)
. (10)

The computation of the scalars κ0 and κ1 is detailed in Section 2.5.3.
Based on Eq. (10) we compute the corresponding joint cdf Gρ1,...,ρm(ρ1, . . . , ρm) through integration:

Gρ1,...,ρm(ρ1, . . . , ρm) =
1

κ0

∫ ρ

0

κ1 − fA(ρ̃)dρ̃, (11)

The inverse transform method is defined for univariate distributions, while G (of Eq. (11)) is an m-variate
distribution. We use the method of Rosenblatt (1952) to transform an m-variate distribution into a uniform
distribution on the m-dimensional hypercube. This transformation breaks down the m-variate distribution into
a set of univariate conditional distributions, allowing the components of ρi to be sampled sequentially. The
transformation is given by:

ρ1 = G−1
ρ1 (u1) (12)

ρ2 = G−1
ρ2|ρ1(u2) (13)

. . .

ρm = G−1
ρm|ρ1...ρm−1

(um) (14)

where uj denotes a realization of a univariate standard uniform random variable, G−1
ρi denotes the inverse of the

cdf of the marginal distribution of ρi, and G−1
ρi|ρ1...ρj denotes the inverse of the cdf of ρi conditional on ρ1, . . . , ρj .

Note that in Eq. (12)-(14), the order of conditioning is defined by the user.
Before introducing the expressions for the marginal and conditional cdf’s, we summarize the notation to be

used in Eq. (15)-(22) below:

Gρi marginal cdf of ρi;
Gρi|ρ1...ρj conditional cdf of ρi conditional on ρ1, . . . , ρj ;
κ0 scalar normalization constant;
κ1 scalar upper bound of fA;
ρi traffic intensity of queue i;
ρ̂i upper bound on ρi;
ki space capacity of queue i in terms of number of vehicles;
ui realization of a univariate standard uniform random variable;
m total number of queues in the network;
M set of all queues.

By explicitly computing the integral in Eq. (11), we can obtain the analytical expression of the joint cdf. The
derivation of the expression for the joint cdf is provided in Appendix B.1. We define ρ̂ = (ρ̂1, . . . , ρ̂m) to be
the vector containing the upper bounds on the possible values of all ρi, such that ρi ∈ [0, ρ̂i],∀i ∈ M. Then,
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the analytical expression of the marginal cdf of ρ1 (Eq. (16)) can be obtained from the joint cdf by letting ρi
= ρ̂i for i = 2, . . . ,m. In other words, the variables ρi, i = 2, . . . ,m are marginalized out of the joint cdf. The
conditional cdf can be computed from the joint cdf by using Leibniz’s integral rule (Abramowitz and Stegun 1964,
Eq. (3.3.7)) to give the expression (18). The variable qi (Eq. (19)) and constant ri (Eq. (20)) were defined to
simplify the expressions of the marginal cdf (Eq. (16)) and the conditional cdf (Eq. (18)). The variable h(ρi)
(Eq. (21)) corresponds the integral of the expected number of vehicles in queue i (i.e., the term in parentheses in

Eq. (7)) with respect to ρi. The derivative dh(ρi)
dρi

(Eq. (22)) then corresponds to the expected number of vehicles

in queue i. Both h(ρi) and dh(ρi)
dρi

are used to simplify the expressions in Eq. (16)-(20). A detailed derivation of

the expression of the marginal and conditional cdf is given in Appendices B.2 and B.3 respectively. Eq. (16) and
(18) are solved using the fzero routine in Matlab to obtain the sampled value of ρi.

u1 = Gρ1(ρ1) (15)

=
1

κ0

[(
κ1ρ1 − h(ρ1)

) m∏
k=2

ρ̂k − r1ρ1

]
(16)

ui = Gρi|ρ1,...,ρi−1
(ρi|ρ1, . . . , ρi−1) (17)

=
κ1ρi

∏m
k=i+1 ρ̂k − qiρi − riρi − h(ρi)

∏m
k=i+1 ρ̂k

κ1ρ̂i
∏m
k=i+1 ρ̂k − qiρ̂i − riρ̂i − h(ρ̂i)

∏m
k=i+1 ρ̂k

for i = 2, . . . ,m (18)

where qi =

(
i−1∑
j=1

dh(ρj)

dρj

)(
m∏

k=i+1

ρ̂k

)
for i = 2, . . . ,m , (19)

ri =

m∑
j=i+1

(
h(ρ̂j)

m∏
k=i+1,k 6=j

ρ̂k

)
∀i ∈M , (20)

h(ρi) = −ρi − log(1− ρi) + ρi log(1− ρki+1
i ) +

∞∑
α=1

ραki+α+1
i

α(αki + α+ 1)
∀i ∈M , (21)

dh(ρi)

dρi
=

ρi
1− ρi

− (ki + 1)ρki+1
i

1− ρki+1
i

. (22)

2.4 Algorithm

The inverse cdf sampling algorithm for generating one realization of x is summarized in Algorithm 1. In brief,
a uniform random vector is transformed to ρ using the inverse transform method as specified by Eq. (12)-(14).
After sampling each ρi, the constraints on ρi (see Section 2.5.1 for details) are checked if they are satisfied. If
the constraints are not satisfied, ρi is resampled based on a newly generated uniform random number according
to Eq. (18). After all the constraints have been satisfied, the complete set of values for ρ is transformed into the
set of values of x using a pseudoinverse as described briefly in Section 2.5.1 and in detail in Appendix B.4.

2.5 Implementation details

2.5.1 Constrained sampling

When generating a set of values for ρ using inverse cdf sampling, the constraints given by Eq. (3), (4), (8) and (9)
have to be satisfied. Eq. (3) and (4) provide the upper and lower bounds on xi respectively. Combining Eq. (4)
and (9) allows the computation of a lower bound on µi, which occurs when all the phases involving queue i are
assigned the minimum green split. From Eq. (9), the lower bound µLBi is then given by

µLBi =
∑

j∈P2(i)

xLBj s+ eis (23)

where xLBj is the jth component of xLB . Eq. (3) and (9) together provide an upper bound on µi based on the
maximum allocable green split for a given intersection (i.e., one phase is allocated all the available green split for
that intersection, and the rest of the phases are allocated only the minimum green split). The upper bound µUBi
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Algorithm 1: Inverse cdf sampling

0. Initialization

(a) Initialize all exogenous parameters
Initialize xLB , s, ei(∀i ∈ L), pij(∀i, j ∈M) for the underlying
network
Initialize c` and d` for all intersections `

Set ρ̂i = 0.999,∀i ∈M (see Section 2.5.2)
Set κ1 according to Eq. (27)

(b) Generate uniform random vector U = (u1, . . . , um) ∈ [0, 1]m

(c) Compute h(ρ̂i),∀i ∈M according to Eq. (21)

(d) Compute ri,∀i ∈M according to Eq. (20)

(e) Compute the normalization constant κ0 according to Eq. (29)

1. Compute inverse of marginal cdf for the first component ρ1

(a) Find the root of u1 = Gρ1(ρ1) to obtain ρ1 according to Eq. (16)

2. Compute inverse of conditional cdf for the remaining
components ρi
for i = 2, . . . ,m, in increasing order of i

(a) Compute ∂h(ρi−1)
∂ρi−1

according to Eq. (22)

(b) Compute qi according to Eq. (19)

(c) Conditioning on the sampled components ρ1, . . . , ρi−1, find the
root of ui = Gρi|ρ1,...,ρi−1

(ρi|ρ1, . . . , ρi−1) to obtain ρi according
to Eq. (18)

(d) Check constraints on ρi if ρj , j ∈ Di have been sampled

i. Check that ρi satisfies the constraints (25) and (26)

ii. if constraints are met
continue to Step 3

else
while constraints are not met

A. Let Ψ denote the set of indices of the
components which do not satisfy the
constraints (25) and (26)

B. Generate uniform random vector U ∈ [0, 1]|Ψ|

C. for i ∈ Ψ, in increasing order of i
Repeat Steps 2a-2c for component i

D. Check that ρi satisfies the constraints (25)
and (26)

10



Algorithm 2: Inverse cdf sampling (continued)

3. Transform ρ to x
Using the complete set of sampled values of ρi,

(a) Compute P (Ni = ki),∀i ∈M according to Eq. (8c)

(b) Compute λi,∀i ∈M simultaneously according to Eq. (8a)

(c) Compute µi,∀i ∈M according to Eq. (8b)

(d) Let Ξ be the matrix with elements ξij = 1 if j ∈ P2(i), 0 otherwise; µ = (µ1, . . . , µm); and
e = (e1, . . . , em). Then, using a Moore-Penrose pseudoinverse of Ξ, compute x according to Eq. (9)
(see Appendix B.4, Eq. (B.45) for details)

given by

µUBi =
(cP3(i) − dP3(i)

cP3(i)
−

∑
j∈P4(i)

xLBj

)
s+ eis (24)

where P3(i) refers to the index of the intersection that queue i leads to, and P4(i) denotes the set of phase indices
at the intersection that queue i leads to, but not including the indices of phases which are green in favor of vehicles
in queue i. The term in brackets in Eq. (24) represents the maximum allocable green split, which is the fraction of
cycle time left for the phase after assigning the minimum green split to the other phases, and accounting for fixed
cycle time. The constraint (24) is not the tightest possible constraint in the sense that, at a given intersection,
the sum of service rates of the queues leading to the intersection could be greater than the flow capacity of the
intersection. This would manifest itself as the sum of green splits at that intersection not adding up to the cycle
time of the intersection when transforming the sampled values of ρ to x (Step 3 of Algorithm 1). For instance,
there could be phases that are simultaneously green during a given period in the cycle, which should not happen
in practice. This issue is overcome by scaling the green splits proportionally, as mentioned in Appendix B.4.

The constraints on µi can be related to constraints on ρi through Eq. (8b), where replacing µi with µLBi
provides the upper bound on ρi and vice versa:

ρi ≤
λi
µLBi

+
( ∑
j∈Di

pijP (Nj = kj)
)( ∑

j∈Di

ρj

)
(25)

ρi ≥
λi
µUBi

+
( ∑
j∈Di

pijP (Nj = kj)
)( ∑

j∈Di

ρj

)
(26)

Note that the right hand sides of the bounds (25) and (26) contain endogenous variables (e.g. ρj for j 6= i),
so they do not act as bounds when drawing samples of ρi. Instead, when drawing a sample for ρi from the
conditional cdf (Eq. (18)), the bounds (25) and (26) are only checked if all ρj , j ∈ Di have been sampled. If ρi
does not satisfy the bounds (25) and (26), it is then resampled from the conditional cdf (Eq. (18)) again. This
process is repeated for all i until a complete set of values for ρ that satisfy the constraints is obtained. This
method of rejection sampling (Robert and Casella 1999, Chapter 2.3) ensures that the sampling of ρi is consistent
with the sampling distribution defined by the conditional cdf.

After sampling for a complete set of values for ρ, we transform it into a set of values of x. This is done
by first computing the values of the service rates µi (using Eq. (8b)). Note that the external arrival rates γi,
transition probabilities pij and queue length upper bounds ki are exogenous. Given ρ, the blocking probabilities
P (Ni = ki) can be computed for all i using Eq. (8c). Given ρ and P (Ni = ki) for all i, λi can be solved for using
Eq. (8a). Then, given ρ, P (Ni = ki) and λi for all i, µi can be computed using Eq. (8b). Having computed µi,
the values of the green splits xk can be computed using a Moore-Penrose pseudoinverse (see e.g. Campbell and
Meyer (1991, Chapter 1)) of the linear equality constraint in Eq. (9), which relates the green splits of a signal
phase to the service rate of the corresponding lane. For more details on the transformation of ρ to x, we refer
the reader to Appendix B.4. A pseudoinverse is used because the linear system of equations is overdetermined,
since the number of queues leading to a given signalized intersection is greater than the number of signal phases
at that intersection. To compute the pseudoinverse, the code of Luong (2009) was used, as it is able to handle
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sparse matrices. The resulting green splits x is unique, since the code of Luong (2009) uses the Moore-Penrose
pseudoinverse, which is unique.

2.5.2 Support of the joint cdf

To obtain the marginal cdf of ρ1 (Eq. (16)), we evaluate the integral in Eq. (11), and marginalized the variables
ρi, i = 2, . . . ,m out of the joint cdf by letting ρi = ρ̂i, i = 2, . . . ,m (see Appendix B.2 for details). In other words,
the support of the joint cdf (Eq. (11)) is taken to be [0, ρ̂]. It should be noted that from Eq. (7), fA(ρ) is undefined
for any ρi = 1. This is true, by extension, for Eq. (21) and (22). As such, for the case studies of this paper, we
set ρ̂i = 0.999 for all i. Note that in theory ρi can be greater than 1 (when there is hypercongestion). This occurs
when the arrival rate to queue i is greater than its service rate (see Eq. (8b)), resulting in a build-up of congestion
on queue i. Hence, by assuming that the greatest value that ρi can take is ρ̂i = 0.999, the distribution is actually
truncated. However, the truncation means there is more sampling probability mass in the region ρi < 1, where
the arrival rate to link i is smaller than its service rate. This means that congestion is less likely to occur in queue
i. Thus, this can have the effect of generating ρi sample values that result in less congestion in queue i.

2.5.3 Computation of κ0 and κ1

Recall from Eq. (1) that κ1 is a scalar upper bound of fA, which represents the expected number of vehicles in
the network (Eq. (5)). The number of vehicles in each queue is bounded above by the queue’s space capacity (ki).
Thus, we set as upper bound:

κ1 =

m∑
i=1

ki. (27)

The normalization constant κ0 is obtained by explicitly evaluating the following integral:

κ0 =

∫ ρ̂

0

κ1 − fA(ρ)dρ. (28)

The resulting expression used to compute κ0 is given by:

κ0 = κ1

m∏
i=1

ρ̂i −
m∑
i=1

[
h(ρ̂i)

( m∏
j 6=i

ρ̂j

)]
(29)

The derivation of Eq. (29) is similar to the derivation of the joint cdf, as given in Appendix B.1 (Eq. (B.1) -
(B.16)).

2.5.4 Computation of an infinite summation

When computing the value of h(ρi) in Eq. (21), we have to evaluate an infinite summation term. This infinite
summation term arises from evaluating the integral in Eq. (11) to obtain the analytical expression of the joint
cdf. It is obtained from the definite integral

∫ ρi
0

log(1 − ρ̃ki+1
i )dρ̃i by integrating the Taylor expansion of the

term in the integral (see Appendix B.1, Eq. (B.12) to (B.14) for details). Since we consider ρi < 1 and the
definite integral can be evaluated to be a constant, the infinite summation term converges to a constant. For
computational purposes, the infinite summation term is approximated by taking the sum of just the first 100
terms, i.e.,

∞∑
α=1

ραki+α+1
i

α(αki + α+ 1)
≈

100∑
α=1

ραki+α+1
i

α(αki + α+ 1)
. (30)

3 Validation

To validate the proposed method we consider a synthetic toy network defined in Osorio and Yamani (2017).
The network is depicted in Figure 2. It consists of 20 single-lane links and 4 intersections, with a main arterial
(horizontal links) and 4 side roads (vertical links). Travel demand is defined such that vehicles only have straight
paths (i.e., they do not make any right or left turnings at the intersections). The signal plans of each intersection
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Figure 2: Toy network

Figure 3: Queueing network representation of the toy network

are thus composed of two signal phases (i.e., there are no signal phases for turning movements). Origins and
destinations of trips occur at the boundaries of the network which are represented by the circles in Figure 2. The
queueing representation of the network is displayed in Figure 3. Each rectangle represents a queue. The arrows
show the possible turns. The numbers in the rectangles represent the signal phase index (i.e., the index of the
signal phase for which the underlying traffic movement has green). The numbers in brackets outside the rectangles
denote the indices of the origin and destination nodes. Table 3 shows the origin-destination (OD) travel demand
of the network. OD pairs which are not included in Table 3 have a demand of zero. Based on this OD travel
demand, there is no congestion build-up with a well-chosen set of green splits. On the contrary, a poorly-chosen
set of green splits will result in congestion, particularly along the main arterial.

First, we compare an estimate of the simulation-based objective function to its analytical approximation (i.e.,
we compare f of Eq. (2) to fA of Eq. (7)). For each intersection the two signal phases are constrained by the
linear equality constraint Eq. (3). Thus, there is only one degree of freedom per intersection. This leads to a
total of four degrees of freedom. Figure 4 displays contour plots for each of the 2-dimensional projections of the
objective function, while keeping the other two signal phases fixed at the histogram bin center value where the

Table 3: Origin-destination travel demand (i.e., external arrival rate) in veh/h

(1)→ (2) (3)→ (4) (5)→ (6) (7)→ (8) (9)→ (10) (11)→ (12) (13)→ (14)
700 700 100 600 600 100 100
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inverse cdf sampling assigns the highest marginal probability as shown in Figure 5a. Details on how the plots
are generated are given in Appendix C. In both Figures 4a and 4b, the first (i.e., top) row of plots display the
analytical approximations, while the second (i.e., bottom) row display the simulation-based estimates. For each
row of plots, the mapping of colors to numerical values is displayed on the right. Figure 4 indicates that for all
pairs of signal phases, the analytical and the simulation-based functions have similar trends, with the gradient of
the function having the same sign when comparing a given region of a projection. The contour lines also have
similar patterns, indicating that the minimum identified by the analytical model is close to that of the simulator.
Note however that the magnitude of the functions differ. Recall from Figure 1 that the inverse cdf sampling is
based on a comparison of values of fA. In other words, fA is used to identify regions of the feasible region that
have better objective function values. Thus, the most important aspect is for fA to capture the relative trends
of f . It is not necessary for it to accurately approximate the magnitude of f .

Let us now compare the marginal sampling distributions obtained from the analytical model to those of
the simulator and to those of a uniform sampling strategy. The gray bars of Figure 5a display an estimate of
the marginal sampling distribution obtained from the analytical approximation fA. The estimates are obtained
from 1000 realizations (or draws) of the decision vector. The x-axis displays the values of the corresponding
decision variable (i.e., the green split of the corresponding signal phase) and the y-axis is the estimated sampling
probability. For comparison, we also display an estimate of a uniform sampling strategy (displayed as white bars).
To sample uniformly from the feasible region (defined by Eq. (3)-(4)) we use the sampling strategy of Stafford
(2006). Figure 5a indicates that the sampling distribution of the proposed approach differs from that of a uniform
sampling distribution. Figure 5b displays an estimate of the simulator’s marginal sampling distribution. Note
that the scale on the y-axis of Figure 5b is different from that of Figure 5a, so as to allow the distribution to be
seen more clearly. More details on the experimental design underlying these figures are given in Appendix C.

The gray bars for phases 1, 5 and 7 in Figure 5a show that the proposed method assigns a high probability
to high values of the corresponding signal phase, which means that it favors the traffic along the main arterial,
as opposed to that of the side roads. This is consistent with the corresponding travel demand (Table 3), which
is defined such that the arterial has a higher demand compared to the side roads for these intersections. The
arterial has a demand of 700 veh/h, while the side roads have demands of 100 veh/h, thus justifying the higher
probability that phases 1, 5 and 7 are assigned values greater than 0.8. For phases 3 and 4, the proposed method
assigns similar amounts of green time. Again this is consistent with the underlying demand for these intersections:
the main arterial and the side road at the second intersection are almost equal, with demands of 700 veh/h and
600 veh/h respectively.

The simulator’s distribution (Figure 5b) has the same trends as that of the proposed method. Namely: (i)
for phases 1, 5 and 7, a higher sampling probability is assigned to signal plans that favor the traffic along the
main arterial compared to the side roads, and (ii) for phases 3 and 4, both roads (arterial and side) are equally
favored. Comparing the distribution of the proposed method to that of the simulator, we also observe that the
modes of each phase match. This indicates that the proposed method has a higher probability of sampling in
the region where the minimum is located than uniform sampling. However, it should be noted that the detailed
shape of the distributions differ. The simulator’s distributions tend to be flatter. We also note that, due to the
linear cycle time constraint (Eq. (3)), the shapes of the distributions for phases 2, 4, 6 and 8 are mirror images
of those of phases 1, 3, 5 and 7 respectively.

4 Case Study: Midtown Manhattan signal control

4.1 Experimental design

We now apply our proposed method to a signal control problem for the area of Midtown Manhattan (MTM) in
New York City. The area of interest is demarcated by a rectangle in the map of Figure 6. We simulate traffic
from 3pm - 6pm and control the signal plans for the peak hour of 5pm-6pm. We control the green splits of 97
intersections for a total of 259 green splits (i.e., decision variables). Osorio and Chong (2015) tackled a problem
with 17 intersections and 99 green splits, which is considered to be large-scale in the field of signal control.
Furthermore, problems with around 200 dimensions are considered high-dimensional in the field of continuous SO
(Wang et al. 2016). Thus, this is considered a high-dimensional signal control SO problem.

The network topology of the simulator is displayed in Figure 7. The MTM simulation model, which is
implemented in the Aimsun software (TSS-Transport Simulation Systems 2015), consists of a total of 698 roads,
2756 lanes and 444 intersections. In the simulated hour of 5-6pm, the expected demand is over 21700 trips per
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(a)

(b)

Figure 4: Two-dimensional projections of the objective function surface as estimated by the analytical model and
simulation model.
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Figure 6: Map of Midtown Manhattan with the area of interest demarcated by a rectangle (MapQuest.com, Inc
2018)

hour, distributed across more than 3500 origin-destination pairs. In this simulation model, all of the green times
have a lower bound of 6 seconds. The corresponding components in the vector of minimal green splits xLB

(Eq. (4)) are the ratio of 6 seconds to the cycle time for the intersection which the green split belongs to.
The simulator’s objective function (Eq. (2)), which is the expected number of vehicles in the network, accounts

for all vehicles that have started their trip. During simulation, when a given queue is full, additional vehicles
entering that particular queue are placed in a virtual queue. In order to counter this in our experiments, the
total demand of the network (i.e., inflow) was scaled to 75% (i.e. 21700 trips per hour) of the original demand, so
that the number of vehicles in the virtual queues is small at any point in time during simulation. However, any
vehicles that enter the virtual queues due to congestion are still included in the count of the number of vehicles
in the network (i.e. the objective function).

To evaluate the added value of the proposed sampling strategy, we embed it within a simulation-based op-
timization (SO) algorithm. The SO algorithm used is based on the metamodel SO algorithm of Osorio and
Bierlaire (2013). A metamodel is an analytical approximation of the simulation-based objective function. This
SO algorithm simulates one of two types of points at each iteration: (i) points defined by a user-defined sampling
distribution, (ii) points that are solutions to an analytical optimization problem, which is known as the meta-
model optimization problem. For more details on the SO algorithm used here, we refer the reader to Appendix D.
We consider 4 instances of this SO algorithm that differ in 2 ways: (i) whether or not the information from
the analytical model is used to specify the sampling strategy, and (ii) whether or not the information from the
analytical model is used to specify the metamodel. These 4 algorithm instances are summarized in Table 4. The
first column defines the name of the algorithm instance. Column 2 indicates whether or not the sampling strategy
uses information from the analytical model. If it does, then the proposed inverse cdf sampling strategy is used.
If it does not, then a uniform sampling strategy is used. The uniform sampling strategy has been traditionally
used as part of the SO algorithm Osorio and Bierlaire (2013). Column 3 indicates whether or not the metamodel
uses information from the analytical model. If it does, then the metamodel is denoted m and is defined as the
sum of a scaled function of fA and a quadratic polynomial. If it does not then, the metamodel is denoted φ
and is a quadratic polynomial. These two metamodel definitions have been traditionally used for metamodel SO
(see e.g., Osorio and Bierlaire (2013, Eq. 3 and 4)). In addition, the notation of m and φ is consistent with our
past works (Osorio and Bierlaire 2013, Osorio and Chong 2015, Osorio and Nanduri 2015a,b, Osorio et al. 2017,
Zhang et al. 2017). The method Unif-m is that used in our past signal control SO work (Osorio and Bierlaire
2013, Osorio and Chong 2015, Osorio and Nanduri 2015a,b, Osorio et al. 2017), while the method Unif-φ served
as the benchmark in those past works.

The algorithms of rows 1 and 2 have a common general-purpose metamodel, which does not use the problem-
specific information from the analytical model. Thus, their comparison serves to evaluate the added value of
complementing a general-purpose SO algorithm with a problem-specific sampling strategy. The algorithms of
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Figure 7: Midtown Manhattan model

rows 3 and 4 have a common metamodel that uses problem-specific information from the analytical model. Thus,
their comparison serves to evaluate the added value of using a problem-specific sampling strategy given that the
metamodel already has a problem-specific component.

For each algorithm instance, we perform experiments that allocate either 10%, 50% or 100% of the simulation
budget to the sampling strategy, while the remaining simulation budget (i.e., 90%, 50% and 0%, respectively) is
used to simulate the solutions of the metamodel optimization problems.

We first consider the case of 100%. In this case, there is no metamodel optimization. In other words, the SO
algorithm consists only of the sampling strategy. This allows us to directly benchmark the performance of the
proposed sampling approach compared to that of a uniform sampling approach. We then consider the cases of
50%, where sampling takes place every other iteration of the SO algorithm, and 10%, where sampling takes place
every of 10th iteration. Note that in each iteration, the SO algorithm may only either draw a sample based on
the sampling strategy or solve the metamodel optimization problem.

To estimate the objective function, for each signal plan, we take the sample mean from 5 simulation replications.
For each replication, we compute the average (over time) number of vehicles in the network during the non-warm-

Table 4: SO Methods

Sampling distribution based on the Metamodel based on the
analytical model? analytical model?

Unif-φ
Invcdf-φ X
Unif-m X
Invcdf-m X X
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Table 5: Proportion of Simulation Budget for Sampling

Sampling Proportion Description
10% Sampling done in the (10i− 9)th iteration, for i = 1, 2, 3, ...
50% Sampling done in the (2i− 1)th iteration, for i = 1, 2, 3, ...
100% Only sampling done, no metamodel optimization takes place

Figure 8: Cdf’s of the average number of vehicles in the network achieved by the best signal plans generated by
the Unif-φ and Invcdf-φ methods at 100% sampling.

up period: 5:20pm - 6:00pm. This average is obtained from observations of the number of vehicles in the
network collected every minute. We consider a tight computational budget of 250 simulation evaluations, i.e.,
each algorithm run is terminated once a total of 250 simulation evaluations are carried. Since we use 5 simulation
replications per point, this means that the computational budget allows to simulate a total of 50 points. For each
experiment (i.e., a given sampling proportion), we consider 3 initial points, which are randomly and uniformly
sampled from the feasible region using the code of Stafford (2006). For each initial point, we run each SO
algorithm 3 times.

4.2 Numerical results

For each final solution derived by each algorithm run, we evaluate its performance based on 50 simulation repli-
cations and then construct the cumulative distribution function (cdf) across these 50 simulation observations.
In Figures 8 - 12, the x-axis represents the average number of vehicles in the network, i.e., the simulation-based
estimate of the objective function. For a given value along the x-axis, the corresponding value on the y-axis
shows the fraction of simulation replications (out of 50) that are smaller than the value on the x-axis. Since the
objective is to minimize the expected number of vehicles in the network, the more the cdf of a given signal plan
lies to the left of the figure, the better the performance of the underlying signal plan.

Figure 8 shows the cdf’s for 100% sampling (i.e., when no metamodel optimization is done). The red dashed
line represents the Unif-φ method, while the solid line denotes the Invcdf-φ method. The Unif-m and Invcdf-m
methods are not shown on this plot, because 100% of the simulation budget is allocated to the sampling strategy
(i.e., no metamodel optimization is performed). This 100% sampling setting allows us to directly compare between
uniform sampling and inverse cdf sampling. In Figure 8, the cdf’s of the Invcdf-φ method are all to the left of
those of Unif-φ. This indicates that, for all 3 initial points, Invcdf-φ outperforms Unif-φ. This shows that the
information of the analytical model increases the chance of sampling points with good performance. Thus, there
is an added value of using problem-specific analytical information to specify the sampling strategy.

The results of the experiments with sampling proportions of 50% and 10% for the Invcdf-φ and Unif-m methods
are given in Figure 9. The left column of Figure 9 shows the results for 50% sampling, while the right column
displays the results for 10% sampling. Each row of plots considers a given initial point. In Figure 9, Invcdf-φ is
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Table 6: T -statistics for paired t-test (Invcdf-φ vs. Unif-m)

Initial Point 50% Sampling 10% Sampling
1 -0.2412 5.3719
2 -3.3832 -4.0747
3 -4.4261 -2.3207

Table 7: T -statistics for paired t-test (Invcdf-m vs. Unif-m)

Initial Point 50% Sampling 10% Sampling
1 -0.3121 -1.5955
2 -2.9563 -4.5719
3 -2.8764 -2.0474

represented by the black solid lines, and Unif-m is denoted by the blue line with stars.
Figure 9 allows us to compare the performance of the proposed signal plans from an SO method which uses

information of the analytical model only in the sampling mechanism (i.e., Invcdf-φ) against that which uses the
information only in the metamodel optimization (i.e., Unif-m). The plots in Figure 9 show that the signal plans
proposed by the Invcdf-φ method are similar or better in performance than those proposed by Unif-m.

To further determine if the differences in performance of the proposed plans are statistically significant, we
performed a one-sided paired t-test based on the average values of the 3 runs for each initial point. Here, the
null hypothesis states that the mean of the 50 simulation replications (averaged over the 3 runs for a given initial
point) using the signal plans proposed by Invcdf-φ is not smaller than that of Unif-m, while the alternative
hypothesis states that the mean of the 50 simulation replications using the signal plans proposed by Invcdf-φ is
smaller than that of Unif-m. The resulting t-statistics are shown in Table 6. Each row considers a given initial
point. The second column shows the t-statistics for 50% sampling, while the third column shows the t statistics
for 10% sampling. Each t-test is considered at the 10% level of significance, with 49 degrees of freedom, leading to
a critical value of -1.299. The t-statistics with values below the critical value are displayed in bold. The results of
the t-tests indicate that two of the signal plans proposed by Invcdf-φ have better performance than those proposed
by Unif-m for both the 50% and 10% sampling settings. This shows that there could be added value to using
information from an analytical model in the sampling mechanism, as opposed to the metamodel optimization.

We now consider whether it is beneficial to use the information from the analytical model in both the sampling
mechanism and metamodel optimization (i.e., Invcdf-m). We compare the performance of signal plans proposed
by Invcdf-m with those proposed by Unif-m and Invcdf-φ. For clarity purposes, the results are plotted on two
separate figures. Figure 10 compares Invcdf-m and Unif-m, while Figure 11 compares Invcdf-m and Invcdf-φ.

The plots in Figure 10 show that the plans proposed by the Invcdf-m method perform similar to or better
than those proposed by Unif-m. The difference in performance is more pronounced for the 10% sampling setting.
Similar to the comparison between Invcdf-φ and Unif-m, we perform one-sided, paired t-tests to determine if the
signal plan proposed by Invcdf-m are significantly better than those proposed by Unif-m. The t-statistics are
displayed in Table 7. The critical value is -1.299, and t-statistics with values below the critical value are shown
in bold. The results in Table 7 show that the plans proposed by Invcdf-m outperform those proposed by Unif-m
for two out of three initial points for the 50% sampling setting, and for all initial points for the 10% sampling
setting. This shows that there is added value to using the information from the analytical model in the sampling
mechanism, in addition to the metamodel optimization.

To see if there is added value to using the information from the analytical model in the metamodel optimization,
in addition to the sampling mechanism, we consider the plots in Figure 11, and the one-sided, paired t-tests in
Table 8. The plots in Figure 11 indicate that the signal plans proposed by Invcdf-m have similar performance to
those proposed by Invcdf-φ. This is confirmed by the results of the t-tests in Table 8, which shows that there is
no significant improvement in performance of the signal plans proposed by Invcdf-m, compared with Invcdf-φ, for
all the initial points in the 50% sampling setting and two out of three initial points in the 10% sampling setting.

Figure 12 summarizes the information shown in Figures 9 - 11. Each cdf curve is constructed using all the
observations across all three initial points (i.e., each curve consists of 50 × 3 × 3 = 450 observations). For the
50% sampling setting, Figure 12a shows that the signal plans proposed by Invcdf-φ and Invcdf-m outperform
those proposed by Unif-m. The plans proposed by Invcdf-φ and Invcdf-m have similar performance. For the
10% sampling setting, Figure 12b shows that the signal plans proposed by Invcdf-m again outperform those
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(a) 50% Sampling - Initial Point 1 (b) 10% Sampling - Initial Point 1

(c) 50% Sampling - Initial Point 2 (d) 10% Sampling - Initial Point 2

(e) 50% Sampling - Initial Point 3 (f) 10% Sampling - Initial Point 3

Figure 9: Cdf’s of the average number of vehicles in the network for the Invcdf-φ and Unif-m methods using the
50% and 10% sampling settings and considering 3 random initial points.
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(a) 50% Sampling - Initial Point 1 (b) 10% Sampling - Initial Point 1

(c) 50% Sampling - Initial Point 2 (d) 10% Sampling - Initial Point 2

(e) 50% Sampling - Initial Point 3 (f) 10% Sampling - Initial Point 3

Figure 10: Cdf’s of the average number of vehicles in the network for the Invcdf-m and Unif-m methods using
the 50% and 10% sampling settings and considering 3 random initial points.
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(a) 50% Sampling - Initial Point 1 (b) 10% Sampling - Initial Point 1

(c) 50% Sampling - Initial Point 2 (d) 10% Sampling - Initial Point 2

(e) 50% Sampling - Initial Point 3 (f) 10% Sampling - Initial Point 3

Figure 11: Cdf’s of the average number of vehicles in the network for the Invcdf-m and Invcdf-φ methods using
the 50% and 10% sampling settings and considering 3 random initial points.
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Table 8: T -statistics for paired t-test (Invcdf-m vs. Invcdf-φ)

Initial Point 50% Sampling 10% Sampling
1 -0.0902 -5.8983
2 -0.2877 -0.8306
3 2.3148 -0.2485

(a) 50% Sampling (b) 10% Sampling

Figure 12: Cdf’s of the average number of vehicles in the network after aggregating across initial points.

proposed by Unif-m, as well as those identified by Invcdf-φ. Here, the performance of the signal plans proposed
by Invcdf-φ and Unif-m are similar. Thus, the results suggest that there is limited value in using information
from the analytical model in the metamodel optimization, in addition to the sampling mechanism, especially
when the sampling proportion of the computational budget is high. When the sampling proportion is low, using
the information in the metamodel optimization, in addition to the sampling mechanism, might still be helpful.

4.3 Computational efficiency

Each iteration of the SO algorithm involves three computationally intensive tasks: (i) solving the metamodel
optimization problem; (ii) sampling following the sampling strategy; (iii) using the traffic simulator to evaluate
the new points derived from (i) or (ii). Here, we compare the computational runtime required for these three
tasks, with a total of 270 observations for sampling, 630 observations for metamodel optimization and 4500
observations for simulations collected while running the experiments for Section 4.2. The experiments were run
on a laptop computer with an Intel Core i7 (2.30 GHz) CPU and 12 GB of RAM. Figure 13 displays the cdf’s for
the computational runtimes for the respective tasks. The x-axis represents the computational runtime required for
the task in seconds. For a given value along the x-axis, the corresponding value on the y-axis shows the fraction
of observations that had runtimes smaller than the value on the x-axis. The red dashed line represents the Unif-φ
method, the black solid line represents the Invcdf-φ method, the blue line with stars denotes the Unif-m method
and the magenta line with circles denotes the Invcdf-m method.

Figure 13a shows the runtimes needed for sampling. Figure 13b shows a zoomed-in section of the plot so that
the curves for Unif-φ and Unif-m can be seen in more detail. The Unif-φ (red dashed line) and Unif-m (blue line
with stars) methods, which make use of uniform sampling, has an overall mean sampling runtime of 0.1 seconds.
On the other hand, the Invcdf-φ (black solid line) and Invcdf-m (magenta line with circles) methods use inverse
cdf sampling, which has an overall mean runtime of 84 seconds. Thus, drawing a sample using the inverse cdf
sampling mechanism takes around 80 seconds longer than drawing a sample using uniform sampling. The step-like
appearance of the empirical cdf curves for the Invcdf-φ and Invcdf-m methods is the result of having to resample
components which do not satisfy the constraints (see Step 2d in Algorithm 1); in some cases, some components
have to be resampled multiple times. In Figure 13a, the difference between the curves for Invcdf-φ and Invcdf-m
can be attributed to the randomness during sampling, since the inverse cdf sampling mechanism used in the two
methods are the same, and does not depend on the metamodel in use or previous simulation evaluations.
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(a) Sampling (b) Sampling (zoomed)

(c) Metamodel Optimization (d) Metamodel Optimization (zoomed)

(e) Simulation (f) Total per iteration (zoomed)

Figure 13: Computational runtimes for (a, b) sampling (per sample point), (c, d) metamodel optimization, (e)
simulation and (f) total computational runtime per iteration.
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Figure 13c illustrates the runtimes required to solve the metamodel optimization problem. Figure 13d shows
a zoomed-in section of the plot so that the curves for Unif-φ and Invcdf-φ can be seen in more detail. The Unif-φ
and Invcdf-φ methods, which make use of the φ-metamodel for optimization, tend to have very fast mean runtimes
of 1.4 seconds and 1.0 seconds respectively. Figure 13d also shows that metamodel optimization for the Invcdf-φ
method is faster than the Unif-φ method. On the other hand, the Unif-m and Invcdf-m methods, which use the
m-metamodel for optimization, have mean runtimes of 1764 seconds and 1694 seconds respectively. The mean
runtimes for metamodel optimization suggest that the metamodel optimization is faster when paired with inverse
cdf sampling, as opposed to when paired with uniform sampling. This is observed for both the φ-metamodel and
m-metamodel. However, based on Figure 13c, it can also be seen that metamodel optimization for the Unif-m
and Invcdf-m methods have runtimes that seem to be distributed in a bimodal fashion. Metamodel optimization
steps that took less than 1500 seconds have mean runtimes of 427 seconds and 343 seconds respectively for the
Unif-m and Invcdf-m methods, while metamodel optimization steps that took 1500 seconds or longer have mean
runtimes of 3570 seconds and 3189 seconds respectively for the Unif-m and Invcdf-m methods.

Figure 13e shows that the runtimes needed for simulation are quite similar for all the SO methods. Each
simulation run has a mean runtime of 466 seconds. Finally, Figure 13f shows the total computational runtimes
needed per iteration of the SO algorithm. The runtime for a given iteration is computed by summing the mean of
the simulation runtimes (since the simulation replications can be run in parallel), and the runtime for sampling or
metamodel optimization (depending on whether it is a sampling iteration or metamodel optimization iteration).
The mean runtimes per iteration required by the Unif-φ and Invcdf-φ methods are 481 seconds and 509 seconds
respectively, while the mean runtimes of the Unif-m and Invcdf-m methods are much longer, with mean runtimes
of 1450 seconds and 1434 seconds respectively. This shows that the Unif-φ and Invcdf-φ methods are much faster
than the Unif-m and Invcdf-m methods. The runtimes of the Unif-m and Invcdf-m methods are again bimodal
due to the metamodel optimization step. Iterations which took less than 2000 seconds have a mean runtime of
630 seconds and 601 seconds for the Unif-m and Invcdf-m methods respectively, while iterations which took 2000
seconds or longer have a mean runtime of 4024 seconds and 3690 seconds for the Unif-m and Invcdf-m methods
respectively.

Based on the results shown in Figures 13a and 13c, the inverse cdf sampling strategy takes about 80 seconds
longer than uniform sampling to generate a sample point, and optimizing the m-metamodel takes up to 3500
seconds longer than optimizing the φ-metamodel. Given that the solutions obtained when using information from
the analytical model in the sampling mechanism (i.e., Invcdf-φ) have similar or better performance (in terms of
objective function value) to those obtained using the information in the metamodel optimization (i.e., Unif-m), it
would be more beneficial to use the information in the sampling mechanism than in the metamodel optimization
since Invcdf-φ requires significantly less computational runtime. Figure 13f confirms that the Invcdf-φ method
requires much less computational runtime (509 seconds per iteration on average) compared to the Unif-m method
(1450 seconds per iteration on average). This corresponds to an 65% reduction in computational runtime in some
iterations, while achieving similar or better performance when using the Invcdf-φ method. Furthermore, there is
no clear advantage to using the information from the analytical model in the metamodel optimization, in addition
to the sampling mechanism (i.e., Invcdf-m), especially when the sampling proportion of the computational budget
is high (i.e., 50% sampling). In the 50% sampling setting, the signal plans proposed by Invcdf-φ and Invcdf-m
have no significant difference. However, Invcdf-m would require 1778 seconds on average to generate a sample
point and optimize once (i.e., 84 seconds to sample by inverse cdf sampling and 1694 seconds to optimize the
metamodel), compared to 85 seconds for Invcdf-φ (i.e., 84 seconds to sample by inverse cdf sampling and 1 second
to optimize the metamodel). This represents a 2100% increase in computational cost.

Thus, when comparing the performance (Figure 13f) for the different methods, we see that using the analytical
model in the sampling mechanism (Invcdf-φ) leads to solutions similar or better performance than using the
analytical model in the metamodel optimization (Unif-m), or both (Invcdf-m). However, using the analytical
mode in the sampling mechanism helps to significantly reduce the amount of computational runtime.

5 Conclusion

This paper answers the question of whether problem-specific structural information from analytical models should
be used in the sampling mechanism, optimization algorithm, or both, when attempting to solve a transportation
SO problem. We also present an alternative sampling strategy for efficient stochastic simulation-based trans-
portation optimization. It puts forward the idea of making use of an analytical model, which contains structural
information of the traffic network, in the sampling mechanism of the optimization framework. This increases the
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probability of sampling points with good performance, while still having a non-zero chance of sampling in other
regions for exploration. Increasing the chances of sampling good points could help to reduce the computational
runtime required to obtain a good solution.

Evaluating this approach on a fixed-time signal control problem of Midtown Manhattan, there have been
promising results for tackling high-dimensional transportation optimization problems. The results show that
placing the analytical model in the sampling mechanism and using an inverse transform method was able to
achieve similar or better performance to the traditional method of using the queueing model in the metamodel for
optimization, coupled with uniform sampling. This was in addition to reducing the overall amount of computa-
tional runtime required. Thus, the inverse cdf sampling strategy can be used as part of an optimization framework
to quickly and efficiently identify solutions with good performance, when there exists prior information on the
structure of the problem.

While the use of inverse cdf sampling has shown promising results, there are some limitations to its use. First,
since the objective function has to be integrated in order for the inverse cdf sampling to work, there is a need
to find an objective function whose integral has a closed analytical form. Ideally, the objective function should
be integrable with respect to the decision variables. However, as shown in this paper, the objective function can
also be integrated with respect to another variable, as long as it can eventually be transformed to the decision
variable.

Another area that can be studied more is the order in which the conditionals (as shown in Eq. (12) - (14))
are taken. It is possible that the order of the conditionals have an implication on the outcome of the sampling.
Although randomizing the order for sampling with the toy network did not produce any noticeable changes, this
cannot be said to be true for all other networks.

Moving forward, we will investigate possible ways to adapt the inverse cdf sampling method into a sequential
design. This could be done in a way similar to the expected improvement criterion in the Efficient Global
Optimization algorithm (Jones et al. 1998). The idea is to take into account points that have already been
evaluated by the simulator, so as to update the analytical model. Based on the updated analytical model, the
sampling mechanism would then be able to pick out the points with better performance with greater probability.
At the same time, it would also be useful to further incentivize the sampling mechanism to sample points far
away from previously evaluated points. This is especially so after finding a good solution, so that there would be
a better exploration-exploitation balance, which could lead to even better solutions.
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A List of Notation Used

f objective function (expected number of vehicles in the road network);
fA approximate analytical expression of the objective function;
F random variable denoting the number of vehicles in the road network;
xj green split of signal phase j (decision variable);
z vector of endogenous simulation variables (e.g, queue-lengths,

vehicular speeds per lane, vehicular densities per lane);
Exogenous problem parameters:

c` cycle time of intersection `;
d` fixed cycle time of intersection `;
ei ratio of fixed green time to cycle time of signalized link i;
xLB vector of minimal green splits;
θ vector of exogenous parameters;
n total number of signal phases to be optimized (i.e., dimension of the

decision vector x);
I set of intersection indices;
P1(`) set of phase indices of intersection `;

Exogenous parameters of the analytical model:
γi external arrival rate at queue i;
m total number of queues in the network;
ki space capacity of queue i in terms of number of vehicles;
pij transition probability from queue i to queue j;
s saturation flow rate [veh/h];
M set of all queues;
L set of indices of the signalized lanes;
Ui set of upstream queues of queue i;
Di set of downstream queues of queue i;
P2(i) set of phase indices of lane i;
P3(i) index of intersection that queue i leads to;
P4(i) set of phase indices at the intersection that queue i leads to, but not

including the indices of phases which are green in favor of vehicles in
queue i;
Endogenous parameters of the analytical model:

ρi traffic intensity;
λi arrival rate;
Ni total number of vehicles in queue i;
P (Ni = ki) probability of queue i being full, also known as the blocking or

spillback probability;
µi service rate of link i;

Analytical sampling distribution notation:
ρ̂i upper bound on the possible values of ρi
gρi,...,ρj joint pdf of ρi to ρj ;
Gρi,...,ρj joint cdf of ρi to ρj ;
Gρi|ρj conditional cdf of ρi conditional on ρj ;
κ0 normalization constant to ensure g integrates to 1;
κ1 upper bound of fA;
ui realization of a univariate standard uniform random variable.
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B Derivation of sampling distributions and transformation of ρ to x
based on the analytical network model (8)

This appendix details the derivations of the analytical expressions for the marginal and conditional cdf’s in
Eq. (15)-(22), as well as the transformation of ρ to x (Section 2.5.1).

B.1 Derivation of the joint cdf Gρ1,...,ρm(ρ1, . . . , ρm)

In order to obtain the analytical expressions of the marginal and conditional cdf’s (Eq. (15)-(22)), we first evaluate
the integral in Eq. (11) to get the analytical expression of the joint cdf. From Eq. (11), we have:

Gρ1,...,ρm(ρ1, . . . , ρm) =
1

κ0

∫ ρ

0

κ1 − fA(ρ̃1, . . . , ρ̃m)dρ̃ (B.1)

=
1

κ0

[ ∫ ρ

0

κ1dρ̃−
∫ ρ

0

fA(ρ̃1, . . . , ρ̃m)dρ̃

]
(B.2)

Computing the first integral in Eq. (B.2) gives:∫ ρ

0

κ1dρ̃ = κ1ρ1 . . . ρm (B.3)

= κ1

m∏
i=1

ρi (B.4)

Using the expressions for fA in Eq. (6), the second integral in Eq. (B.2) can be computed as:∫ ρ

0

fA(ρ̃1, . . . , ρ̃m)dρ̃ =

∫ ρ

0

m∑
i=1

E
[
Ni(ρ̃i)

]
dρ̃ (B.5)

=

m∑
i=1

∫ ρ

0

E
[
Ni(ρ̃i)

]
dρ̃ (B.6)

=

m∑
i=1

[ ∫ ρi

0

E
[
Ni(ρ̃i)

]
dρ̃i

](∏
j 6=i

ρj

)
(B.7)

The transition from Eq. (B.5) to Eq. (B.6) makes use of the fact that Ni(ρi) is a function of ρi only. Similarly,
since Ni(ρi) does not depend on ρj , j 6= i, integrating with respect to ρj , j 6= i, produces Eq. (B.7). This simplifies
the integral to a univariate integral. We define h(ρi) to be the integral in Eq. (B.7) and evaluate it:

h(ρi) =

∫ ρi

0

E
[
Ni(ρ̃i)

]
dρ̃i (B.8)

=

∫ ρi

0

ρ̃i
1− ρ̃i

− (ki + 1)ρ̃ki+1
i

1− ρ̃ki+1
i

dρ̃i (B.9)

= −ρi − log(1− ρi)−
∫ ρi

0

(ki + 1)ρ̃ki+1
i

1− ρ̃ki+1
i

dρ̃i (B.10)

= −ρi − log(1− ρi) + ρi log
(
1− ρki+1

i

)
−
∫ ρi

0

log
(
1− ρ̃ki+1

i

)
dρ̃i (B.11)

where Eq. (B.9) uses the expression for fA in Eq. (7). Integrating the first term in Eq. (B.9) leads to Eq. (B.10).
Finally, Eq. (B.11) is obtained by evaluating the integral in Eq. (B.10) by parts. Note that the term in the integral
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in Eq. (B.11) can be Taylor expanded before being integrated, giving:∫ ρi

0

log
(
1− ρ̃ki+1

i

)
dρ̃i =

∫ ρi

0

[
−
∞∑
α=1

(
ρ̃ki+1
i

)α
α

]
dρ̃i (B.12)

= −
∞∑
α=1

1

α

∫ ρi

0

ρ̃αki+αi dρ̃i (B.13)

= −
∞∑
α=1

ραki+α+1
i

α(αki + α+ 1)
(B.14)

where Eq. (B.12) uses the Taylor expansion of the term in the integral. The independence of α and ρi allows
the order of the summation and integral to be interchanged in Eq. (B.13). Finally, the evaluation of the integral
leads to the expression in Eq. (B.14). Inserting Eq. (B.14) into Eq. (B.11) gives the final expression of h(ρi) as
shown in Eq. (21):

h(ρi) = −ρi − log(1− ρi) + ρi log(1− ρki+1
i ) +

∞∑
α=1

ραki+α+1
i

α(αki + α+ 1)
∀i ∈M (B.15)

Putting together Eq. (B.2), (B.4), (B.7) and (B.15), the analytical expression for the joint cdf is:

Gρ1,...,ρm(ρ1, . . . , ρm) =
1

κ0

[
κ1

m∏
i=1

ρi −
m∑
i=1

h(ρi)
( m∏
j 6=i

ρj

)]
(B.16)

B.2 Derivation of the marginal cdf Gρ1(ρ1) (Eq. (16))

The marginal cdf Gρ1(ρ1) is used in Step 1 of Algorithm 1 to obtain the sample value for ρ1. It can be derived
from the joint cdf (Eq. (B.16)) by marginalizing the variables ρi for i = 2, . . . ,m out of the joint cdf. Since the
support of the joint cdf is taken to be [0, ρ̂] (Section 2.5.2), this can be done by setting ρi = ρ̂i for i = 2, . . . ,m
(see Evans and Rosenthal (2004, Theorem 2.7.3)). The resulting expression for Gρ1(ρ1) is then derived to give
Eq. (16), as follows:

Gρ1(ρ1) = Gρ1,ρ2,...,ρm(ρ1, ρ̂2, . . . , ρ̂m) (B.17)

=
1

κ0

[
κ1ρ1

m∏
i=2

ρ̂i − h(ρ1)

m∏
i=2

ρ̂i −
m∑
i=2

h(ρ̂i)
(
ρ1

m∏
j=2,j 6=i

ρ̂j

)]
(B.18)

=
1

κ0

[(
κ1ρ1 − h(ρ1)

) m∏
i=2

ρ̂i − ρ1

m∑
i=2

h(ρ̂i)
( m∏
j=2,j 6=i

ρ̂j

)]
(B.19)

=
1

κ0

[(
κ1ρ1 − h(ρ1)

) m∏
i=2

ρ̂i − ρ1r1

]
(B.20)

where Eq. (B.18) is derived from Eq. (B.16) by setting ρi = ρ̂i for i = 2, . . . ,m. Eq. (B.19) and (B.20) are then
obtained by factorizing and tidying up Eq. (B.18). The constant r1 is defined in Eq. (20) and (B.32), and helps
to simplify the expression (B.20).

B.3 Derivation of conditional cdf Gρi|ρ1,...,ρi−1
(ρi|ρ1, . . . , ρi−1)

(Eq. (18))

The conditional cdf Gρi|ρ1,...,ρi−1
(ρi|ρ1, . . . , ρi−1) is used in Step 2c in Algorithm 1 to get the sample value for ρi,

conditioned on the components that have been sampled. The expression for the conditional cdf given by Eq. (18)
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can be derived by first noting that

Gρi|ρ1,...,ρi−1
(ρi|ρ1, . . . , ρi−1)

= gρi|ρ1,...,ρi−1
(Pi ≤ ρi|ρ1, . . . , ρi−1) (B.21)

=
gρi,ρ1,...,ρi−1

(Pi ≤ ρi, ρ1, . . . , ρi−1)

gρ1,...,ρi−1
(ρ1, . . . , ρi−1)

(B.22)

=
1

gρ1,...,ρi−1
(ρ1, . . . , ρi−1)

∫ ρi

0

gρi,ρ1,...,ρi−1
(ρ̃i, ρ1, . . . , ρi−1)dρ̃i (B.23)

=
1

gρ1,...,ρi−1(ρ1, . . . , ρi−1)

[
d

dρi−1

∫ ρi−1

0

. . .

. . .
d

dρ1

∫ ρ1

0

∫ ρi

0

gρi,ρ1,...,ρi−1
(ρ̃i, ρ̃1, . . . , ρ̃i−1)dρ̃idρ̃1 . . . dρ̃i−1

] (B.24)

=
1

gρ1,...,ρi−1
(ρ1, . . . , ρi−1)

[
di−1

dρ1 . . . dρi−1

∫ ρi−1

0

. . .

. . .

∫ ρ1

0

∫ ρi

0

gρi,ρ1,...,ρi−1(ρ̃i, ρ̃1, . . . , ρ̃i−1)dρ̃idρ̃1 . . . dρ̃i−1

] (B.25)

=
1

gρ1,...,ρi−1(ρ1, . . . , ρi−1)

[
di−1Gρi,ρ1,...,ρi−1(ρi, ρ1, . . . , ρi−1)

dρ1 . . . dρi−1

]
(B.26)

where Pi is the random variable representing the sampled values of ρi. Eq. (B.21) makes use of the definition
of cdf’s (Evans and Rosenthal 2004, Definition 2.5.1) to represent the conditional cdf in terms of the conditional
pdf. The transition from Eq. (B.21) to (B.22) uses the definition of conditional pdf’s (Evans and Rosenthal
2004, Definition 2.8.3). The integral in Eq. (B.23) can be integrated with respect to ρ1 and then differentiated
with respect to ρ1 again with no net effect, because of the Leibniz’s integral rule (Abramowitz and Stegun 1964,
Eq. (3.3.7)):

d

dc

∫ b(c)

a(c)

f(x, c)dx =

∫ b(c)

a(c)

∂

∂c
f(x, c)dx+ f(b, c)

db

dc
− f(a, c)

da

dc
(B.27)

The first and third term on the right hand side of Eq. (B.27) would be zero, leaving just the second term. This
is repeated with ρj for j = 2, . . . , i − 1 to give Eq. (B.24). The order of the integrals and derivatives can be
switched since ρ1, . . . , ρi−1 are assumed independent for the purpose of sampling. Finally, Eq. (B.26) is obtained
by making use of the fact that the integral of the joint pdf is the joint cdf of ρ1, . . . , ρi.

Based on the expression (B.26) for the conditional cdf, we require the analytical expressions for the joint pdf
gρ1,...,ρi−1(ρ1, . . . , ρi−1) and the joint cdf Gρi,ρ1,...,ρi−1(ρi, ρ1, . . . , ρi−1). We start with the joint cdf first; similar
to deriving the marginal cdf in Section B.2, we marginalize the variables ρj for j = i + 1, . . . ,m out of the full
joint cdf Gρ1,...,ρm(ρi, ρ1, . . . , ρm):

Gρi,ρ1,...,ρi−1(ρi, ρ1, . . . , ρi−1) = Gρ1,...,ρm(ρ1, . . . , ρi, ρ̂i+1, . . . , ρ̂m) (B.28)

=
1

κ0

[
κ1

i∏
j=1

ρj

m∏
k=i+1

ρ̂k −
i∑

j=1

h(ρj)

 i∏
k=1,k 6=j

ρk

( m∏
k=i+1

ρ̂k

)

−
m∑

j=i+1

h(ρ̂j)

(
i∏

k=1

ρk

) m∏
k=i+1,k 6=j

ρ̂k

] (B.29)

The derivative in Eq. (B.26) is then given by differentiating Eq. (B.29):

di−1Gρi,ρ1,...,ρi−1(ρi, ρ1, . . . , ρi−1)

dρ1 . . . dρi−1
=

1

κ0

[
κ1ρi

m∏
k+1

ρ̂k − ρi
i−1∑
j=1

dh(ρj)

dρj

(
m∏

k=i+1

ρ̂k

)

− h(ρi)

m∏
k=i+1

ρ̂k − ρi
m∑

j=i+1

h(ρ̂j)

m∏
k=i+1,k 6=j

ρ̂k

]
(B.30)
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In order to simplify the expression in Eq. (B.30), we define the variable qi and constant ri, as given in Eq. (19)
and (20):

qi =

(
i−1∑
j=1

dh(ρj)

dρj

)(
m∏

k=i+1

ρ̂k

)
for i = 2, . . . ,m , (B.31)

ri =

m∑
j=i+1

(
h(ρ̂j)

m∏
k=i+1,k 6=j

ρ̂k

)
∀i ∈M (B.32)

The derivative dh(ρi)
dρi

in Eq. (B.31) can be evaluated as such:

dh(ρi)

dρi
=

d

dρi

∫ ρi

0

E [Ni(ρ̃i)] dρ̃i = E [Ni(ρi)] (B.33)

Inserting Eq. (B.31) and (B.32) into Eq. (B.30),

di−1Gρi,ρ1,...,ρi−1
(ρi, ρ1, . . . , ρi−1)

dρ1 . . . dρi−1
=

1

κ0

[
κ1ρi

m∏
k+1

ρ̂k − qiρi − riρi − h(ρi)

m∏
k=i+1

ρ̂k

]
(B.34)

We now consider the joint pdf gρ1,...,ρi−1(ρ1, . . . , ρi−1). The joint pdf can be represented as the derivative of
the joint cdf (Evans and Rosenthal 2004, Corollary 2.5.1). Then, by observing that Eq. (B.35) is the same as
setting ρi = ρ̂i in Eq. (B.34), we get the expression for the joint pdf in Eq. (B.37):

gρ1,...,ρi−1
(ρ1, . . . , ρi−1) =

di−1Gρ1,...,ρi−1(ρ1, . . . , ρi−1)

dρ1 . . . dρi−1
(B.35)

=
di−1Gρi,ρ1,...,ρi−1

(ρ̂i, ρ1, . . . , ρi−1)

dρ1 . . . dρi−1
(B.36)

=
1

κ0

[
κ1ρ̂i

m∏
k+1

ρ̂k − qiρ̂i − riρ̂i − h(ρ̂i)

m∏
k=i+1

ρ̂k

]
(B.37)

By inserting Eq. (B.34) and (B.37) into Eq. (B.26), we get the expression for the conditional cdf as given in
Eq. (18):

Gρi|ρ1,...,ρi−1
(ρi|ρ1, . . . , ρi−1) =

κ1ρi
∏m
k=i+1 ρ̂k − qiρi − riρi − h(ρi)

∏m
k=i+1 ρ̂k

κ1ρ̂i
∏m
k=i+1 ρ̂k − qiρ̂i − riρ̂i − h(ρ̂i)

∏m
k=i+1 ρ̂k

for i = 2, . . . ,m (B.38)

B.4 Transformation from ρ to x

Given the sampled values ρ, we first transform them to µ, and subsequently to x. The transformation of ρ to µ
involves using the analytical model (8). Rearranging Eq. (8b), we get an expression for µi as a function of the
sampled ρi:

µi = λi

[
ρi −

( ∑
j∈Di

pijP (Nj = kj)
)( ∑

j∈Di

ρj

)]−1

(B.39)

From the values of µi, a set of values for the decision variables xj can be obtained. From Eq. (9), we have

µi = s

ei +
∑

j∈P2(i)

xj

 ∀i ∈ L (B.40)

=⇒
∑

j∈P2(i)

xj =
µi
s
− ei (B.41)

We can replace P2(i) with the matrix elements

ξij =

{
1 if j ∈ P2(i)

0 otherwise
(B.42)
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Rewriting Eq. (B.41) with ξij , ∑
j

ξijxj =
µi
s
− ei ∀i ∈ L (B.43)

In matrix form, this can be written as

Ξx =
1

s
µ− 1

c
e (B.44)

x = Ξ−1
[1
s
µ− 1

c
e
]

(B.45)

where Ξ ∈ {0, 1}|L|×|x| is made up of the elements ξij , and is known from the road network. As mentioned in
Section 2.5.1, the system of linear equations can be solved using a Moore-Penrose pseudoinverse of Ξ to obtain
the sample point in terms of x. In cases where the sum of the green splits for a given intersection does not add
up to the cycle time of that intersection, the green splits are scaled proportionally so that they add up correctly.

C Details on validation plot generation

In each plot of Figure 4, the phases that are not plotted have green split values that are fixed at the histogram bin
center value where the inverse cdf sampling assigns the highest marginal probability as shown in Figure 5a. As an
example, for the top left plot, x5 and x7 were both fixed at 0.777778. For the plot based on the queueing model,
the plots were generated by computing the expected number of vehicles in the network using the expression in
Eq. (7), with the green splits for Phases 1, 3, 5 and 7 used to compute the corresponding ρ values using Eq. (8)
and (9). For the plots based on traffic simulation results, 10 traffic simulation replications were used to compute
the average objective function estimates at each point.

To generate the marginal distributions in Figure 5b, we first note that the toy network has 4 degrees of freedom
due to the linear cycle time constraint on the green split at each intersection (Eq. (3)). The joint green split
distribution based on traffic simulation estimates can be represented by

gx1,x3,x5,x7(x1, x3, x5, x7) =
1

κ0

(
κ′1 − E[F (x1, x3, x5, x7)]

)
(C.1)

where gx1,x3,x5,x7(x1, x3, x5, x7) is the joint green split distribution, κ0 is the normalization constant as computed
according to Eq. (28), and κ′1 is a constant satisfying the constraint κ′1 ≥ E[F (x1, x3, x5, x7)] to ensure non-
negativity. Here, the phases are numbered such that Phases 1 and 2 correspond to the first intersection on
the left, as displayed in Figure 2, while Phases 3 and 4 correspond to the second intersection from the left and
so on. The odd numbered phases are the phases that are green in favor of the main arterial (i.e., OD pairs
(1) → (2) and (3) → (4) of Figure 3), while the even numbered phases are green in favor of the side roads
(i.e., OD pairs (5) → (6), (7) → (8), (9) → (10), (11) → (12) and (13) → (14) of Figure 3). Then, treating
gx1,x3,x5,x7(x1, x3, x5, x7) like a joint pdf, we compute the marginal distributions by summing out all but the
relevant variable. For instance, to obtain the marginal distribution for x1, we sum out x3, x5 and x7 (see
Eq. (C.2)). We first identify 6 green splits that are uniformly distributed in the feasible range of green split
values for each phase, sort them in increasing order, and represent them by the indices i, j, k, l for Phase 1, 3,
5 and 7 respectively (i.e., (i, j, k, l) ∈ [1, 2, 3, 4, 5, 6]4). The choice of 6 green splits was used as a compromise
between having as many green splits as possible and computational runtime. This leads to 64 = 1296 possible
combinations of green splits for the 4 intersections. Each of these combinations are simulated 10 times to obtain
an average of the objective function estimate. The marginal distributions are then approximated using a discrete
sum. Eq. (C.2) shows the case for calculating the marginal distribution for Phase 1, with the rest of the phases
(i.e., Phases 3, 5 and 7) taking on a similar form:

gx1(x1,i) ≈
1

κ0

6∑
j=1

6∑
k=1

6∑
l=1

[
κ′1 − f(xijkl)

]
∆x3∆x5∆x7 (C.2)

where x1,i denotes the ith green split value for Phase 1. xijkl refers to the green split combination with i, j, k, l
representing the index of the green split of Phase 1, 3, 5 and 7 respectively. Each of ∆xp is the interval between
each successive green split for phase p.
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D Simulation-based optimization algorithm

The simulation optimization (SO) framework used for this study is based on the metamodel-based optimization
method proposed by Osorio and Bierlaire (2013). A metamodel is an analytical function which attempts to
approximate the underlying objective function. The notation to be used in the algorithm is defined at a given
iteration k as such:

xk current iterate
∆k trust region radius
mk/φk metamodel
νk = (αk,βk) vector of metamodel parameters
nk total number of simulation runs conducted up to and

including iteration k
uk total number of successive trial points rejected

f̂ simulation estimate of objective function
τk number of optimization iterations since the last sampling iteration
τ̄ number of optimization iterations to run before switching to a

sampling iteration,
as defined by the simulation budget for sampling (see Table 5)

nmax total number of simulation run permitted
r̄ number of simulation replications per iteration
d number of decision variables
z endogenous variables

The metamodels used in Section ?? are denoted m and φ (see Table 4). The m metamodel makes use of the
analytical network model estimate of the objective function (Eq. (7)), in addition to a functional component, as
shown in Eq. (D.1). The φ metamodel is a general-purpose metamodel, consisting of just a quadratic polynomial,
as shown in Eq. (D.2).

mk(xk, z;αk,βk, p) = αkf
A(xk, z; p) + φk(xk;βk) (D.1)

φk(xk;βk) = βk,1 +

d∑
j=1

βk,j+1xk,j +

d∑
j=1

βk,j+d+1x
2
k,j (D.2)

Before running the SO algorithm (Algorithm 3), the SO method (Table 4), along with the proportion of
simulation budget to be used for sampling (Table 5), have to first be selected. The initial point x0 is generated

using uniform sampling, and evaluated by simulation to obtain the simulation estimate f̂(x0). The simulation
estimate is then used to fit the metamodel parameters by solving a least squares problem (Osorio and Bierlaire
2013, Eq. 5). The initialization step (Step 0) is the same as Step 0 in the algorithm proposed by Osorio and
Bierlaire (2013, Section 4.2). The notation used is the same, except for γ̄ and r̄, which are represented by γ and
r in Osorio and Bierlaire (2013).

Subsequently, at each iteration, the algorithm either (i) samples a new point to evaluate (Step 1), or (ii) it
optimizes the fitted metamodel (Steps 2-4) based on the proportion of simulation budget allocated to sampling.
In the sampling step, a new point is generated by the chosen sampling strategy, and evaluated by simulation. The
simulation observation is then used to update the metamodel parameters. The optimization steps (Steps 2-4) are
the same as Steps 2, 3 and 5 in Osorio and Bierlaire (2013, Section 4.2). The notation used is the same, except for
ψk, which is represented by ρk in Osorio and Bierlaire (2013). The main difference between Algorithm 3 and the
algorithm proposed in Osorio and Bierlaire (2013) is that the model improvement step (i.e., Step 3 in Osorio and
Bierlaire (2013)) is replaced by the sampling step (Step 1 in Algorithm 3). The sampling step of Algorithm 3 is
triggered after a deterministic number of optimization iterations, whereas the model improvement step of Osorio
and Bierlaire (2013) is triggered based on the change in metamodel parameters. Also, the model improvement
step of Osorio and Bierlaire (2013) uses uniform sampling to sample for a new point. For additional details about
the metamodel-based optimization steps (Steps 2-4 in Algorithm 3), we refer the reader to Osorio and Bierlaire
(2013, Section 4.2, Steps 2, 3 and 5)
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Algorithm 3: Simulation-based optimization algorithm

Let η1, γ̄, γinc, d̄, ū,∆max be constants which satisfy the following constraints: 0 < η1 < 1,
0 < γ̄ < 1 < γinc, 0 < d̄ < ∆max, ū ∈ N∗ (see Osorio and Bierlaire (2013, Section 4.3) for values used)

0. Initialization

(a) Select metamodel for use: m (Eq. (D.1)) or φ (Eq. (D.2))

(b) Select sampling strategy: uniform sampling (i.e., Unif) or inverse cdf sampling (i.e., Invcdf; see
Algorithm 1)

(c) Select proportion of simulation budget for sampling and set τ̄ : 10% (τ̄ = 9), 50% (τ̄ = 1) or 100%
(τ̄ = 0)

(d) Set k = 0, n0 = 0, u0 = 0, τ0 = 0

(e) Sample an initial point x0 using uniform sampling

(f) Determine ∆0 (∆0 ∈ (0,∆max)) (see Osorio and Bierlaire (2013, Section 4.3) for values used)

(g) Run r̄ simulations to get f̂(x0) and set n0 = n0 + r̄

(h) Compute ν0 according to Osorio and Bierlaire (2013, Eq. (5)) and fit an initial metamodel

(i) Set nk+1 = nk, k = k + 1

1. Sampling
if τk = τ̄ do

(a) Sample for a new point xk using the chosen sampling strategy

(b) Run r̄ simulations to get f̂(xk) and set nk = nk + r̄

(c) Include the new observation in the set of point evaluated by simulation.
Compute νk according to Osorio and Bierlaire (2013, Eq. (5)) and fit the new metamodel mk+1 or
φk+1.

(d) Set nk+1 = nk, τk+1 = 0, k = k + 1

(e) if nk < nmax do repeat Step 1, else stop

else
Go to Step 2

end

2. Optimization: step calculation
Compute a step sk that minimizes the metamodel mk or φk, such that the trial point xk + sk is within the
trust region.
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Algorithm 4: Simulation-based optimization algorithm (continued)

4. Optimization: acceptance or rejection of the trial point

(a) Run r̄ simulations to get f̂(xk + sk) and set nk = nk + r̄

(b) Compute the ratio ψk = f̂(xk)−f̂(xk+sk)
mk(xk)−mk(xk+sk) or ψk = f̂(xk)−f̂(xk+sk)

φk(xk)−φk(xk+sk) depending on the chosen

metamodel

(c) if ψk ≥ η1 do
Accept the trial point: xk+1 = xk + sk, uk = 0, τk = τk + 1

else
Reject the trial point: xk+1 = xk, uk = uk + 1, τk = τk + 1

end

(d) Include the new observation in the set of points evaluated by simulation. Compute νk according to
Osorio and Bierlaire (2013, Eq. (5)) and fit the new metamodel mk+1 or φk+1

5. Optimization: trust region radius update

∆k+1 =


min{γinc∆k,∆max} if ψk > η1

max{γ̄∆k, d̄} if ψk ≤ η1 and uk ≥ ū
∆k otherwise

(a) if ψk ≤ η1 and uk ≥ ū, do set uk = 0

(b) Set nk+1 = nk, uk+1 = uk, k = k + 1

(c) if nk < nmax do go to Step 1, else stop
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