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Abstract

This paper formulates a discrete simulation-based optimization (SO) algorithm for a family of
large-scale car-sharing service design problems. We focus on the profit-optimal assignment of
vehicle fleet across a network of two-way (i.e., round-trip) car-sharing stations. The proposed
approach is a metamodel SO approach. A novel metamodel based on a mixed-integer program
(MIP) is formulated. The metamodel is embedded within a general-purpose discrete SO algorithm.
The proposed algorithm is validated with synthetic toy network experiments. The algorithm is
then applied to a high-dimensional Boston case study using reservation data from a major US
car-sharing operator. The method is benchmarked versus several algorithms, including stochastic
programming. The experiments indicate that the analytical network model information, provided
by the MIP to the SO algorithm, is useful both at the first iteration of the algorithm and across
subsequent iterations. The solutions derived by the proposed method are benchmarked versus the
solution deployed in the field by the car-sharing operator. Via simulation, the proposed solutions
improve those deployed with an average improvement of profit of 6% and of vehicle utilization of
3%.

The combination of the problem-specific analytical MIP with a general-purpose SO algorithm en-
ables the discrete SO algorithm to: (i) address high-dimensional problems, (ii) become computa-
tionally efficient (i.e., it can identify good quality solutions within few simulation observations),
(iii) become robust to the quality of the initial points and of the stochasticity of the simulator.
More generally, the information provided by the MIP to the SO algorithm enables it to exploit
problem-specific structural information. This leads to an algorithm with both asymptotic conver-
gence guarantees as well as good short term performance (i.e., performance given few simulation
observations). We view this general idea of combining analytical MIP formulations with general-
purpose SO algorithms, or more broadly with general-purpose sampling strategies of high-resolution
data, as an innovative and promising area of future research.
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1 Introduction

In recent years, the most successful trend in the space of urban mobility services has been the
widespread use of shared mobility services, such as ride-sharing, car-sharing, bike-sharing and,
most recently, scooter-sharing (Shaheen and Chan, 2016). Car-sharing has become a popular
transportation mode in urban areas. Its deployment, as of 2010, covered over 31,600 vehicles in
over 1,100 cities in 26 countries with over 1 million members (Shaheen and Cohen, 2013). The
car-sharing literature has studied its potential to reduce the transportation cost of households
(Duncan, 2011), to complement private-vehicle ownership (Shaheen and Cohen, 2013; Becker et al.,
2017) and public transportation systems (Chiraphadhanakul 2013 Chapter 4, Nair and Miller-Hooks
2014, Zhou 2015 Chapter 3), as well as to mitigate greenhouse gas emissions and total vehicle miles
traveled (Firnkorn and Müller, 2011; Shaheen and Cohen, 2013).

Major technology companies have been behind the rapid growth of these shared mobility services.
The operators of these services collect disaggregate data of vehicle usage and of client (user) behav-
ior. This data provides a high-resolution description of the interaction of demand and supply. This
paper is motivated by the following research question: how can we exploit the rich disaggregate
information in this data to optimize the design and the operations of these new urban mobility
services?

A current trend among major technology companies is to design optimization methods that exploit
the rich information in their disaggregate data. Companies are building high-resolution simulators
of their services that sample directly from their disaggregate data and provide a disaggregate
description of the performance of their services (e.g., Greenhall (2016)). Hence, the next generation
of mobility optimization algorithms will increasingly perform optimization based on models that
provide a disaggregate description of mobility. This paper addresses this need. It formulates a
car-sharing optimization problem as a simulation-based optimization (SO) problem, and proposes
a computationally efficient SO algorithm. We use a disaggregate car-sharing service simulator,
which was developed in collaboration with Ford and with the car-sharing operator Zipcar (Fields
et al., 2017). The simulator samples from disaggregate car-sharing reservation data to estimate
(disaggregate) demand (i.e., it yields a set of desired reservations) and then provides a stochastic
mapping of how this demand interacts with supply to yield disaggregate reservations (i.e., a final
set of realized reservations). The proposed algorithm is an example of how abundant disaggregate
mobility data can be used to perform large-scale (e.g., city-scale) optimization.

This paper focuses on two-way (i.e., round-trip) car-sharing services with an application to a Boston
case study with Zipcar data. Zipcar is a major car-sharing service provider in the US. It is also
one of the world’s largest car-sharing service provider with operations in more than 500 cities
worldwide. It has deployed over 12,000 vehicles around the world (Zipcar, 2017). Currently, Zipcar
offers two-way service, one-way station-based service and free-floating service. Two-way is the
primary service mode for Zipcar and the foundation of its business. Studying the optimization of
its two-way service is critical for Zipcar’s business.

The optimization problem studied in this paper is the optimal spatial allocation of a fleet of two-
way car-sharing vehicles to a set of stations. This is a tactical decision that car-sharing operators
typically make on a monthly basis. The corresponding optimization problem is solved offline. As
is detailed in Section 2.1, the most common approach to address these optimization problems is to
aggregate the data such as to estimate parameters of a mathematical program, such as a mixed-
integer programming model (MIP) or a stochastic programming model (SP). These mathematical
programs provide an aggregate description of both demand and of the interaction of demand and
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supply. This aggregate description enables their computational tractability and their scalability
(i.e., their use for large-scale instances). Nonetheless, through this aggregation a wealth of infor-
mation of the intricate interactions between demand and supply is lost. We propose a technique
that embeds MIP information within a general-purpose discrete simulation-based optimization al-
gorithm (DSO). This combination allows to exploit both (i) the detailed information from the
disaggregate car-sharing data that underlies the simulator and (ii) the computational scalability
and efficiency characteristic of MIPs.

The contributions of this paper can be summarized as follows.
Disaggregate data-driven technique. The most traditional approach to car-sharing service
optimization has been analytical optimization. This comes at the cost of a simplified description
of demand and of demand-supply interactions. In this work, our goal is to acknowledge both
the intricacy of a car sharing service (e.g., intricate demand distribution, intricate demand-supply
interactions), as well as the availability of high-resolution data. Hence, we propose a method that
relies heavily on the rich reservation data and uses limited modeling assumptions. The information
captured in the data about the underlying demand distribution and demand-supply interactions is
preserved and exploited at a disaggregate level. To the best of our knowledge, this is the first work
to design an algorithm that preserves this high-resolution information of the data (i.e., does not
merely aggregate the disaggregate data) for car-sharing fleet allocation optimization. Case studies
with data from Zipcar’s Boston market are carried out.

The proposed algorithm contributes to the DSO literature in the following three ways.
1. Enhanced scalability. The proposed algorithm is suitable to address high-dimensional fleet
allocation problems. In Section 4.3 and 4.4, we use it to address a Boston metropolitan area case
study with 315 stations. General-purpose DSO algorithms have been extensively used to tackle
problems with roughly 20 decision variables. We achieve scalability by formulating and embed-
ding within the general-purpose DSO algorithm Adaptive Hyperbox Algorithm (AHA) (Xu et al.,
2013) information from a MIP. This yields the proposed DSO algorithm, which we call MetaAHA.
The approach combines the merits of both analytical optimization methods (i.e., tractability and
scalability) and of simulation-based optimization methods (i.e., we can sample directly from the
disaggregate data to enable a detailed description of demand and of demand-supply interactions).
Our enhanced scalability comes at the cost of proposing an algorithm tailored for a specific class
of fleet allocation problems, while the general-purpose DSO algorithms can be used for a broader
class of problems.

2. Enhanced computational efficiency and robustness to initial points. The proposed
algorithm identifies good quality solutions within few iterations (i.e., when few simulation ob-
servations are available). This differs from most DSO literature which is focused on asymptotic
performance. This efficiency is achieved through the novel metamodel formulation which embeds
a non-simulation-based representation (a MIP formulation) of the optimization problem. In other
words, the simulator is no longer treated as a black box, instead analytical problem-specific infor-
mation is embedded within the SO algorithm. The results of Section 4 indicate that this analytical
structural information is the key to achieving computational efficiency. Moreover, the proposed
method preserves the asymptotic convergence and performance properties of the underlying DSO
algorithm. In particular, like AHA, the proposed algorithm remains a locally convergent algo-
rithm. The combination of the proposed metamodel along with a general-purpose DSO algorithm
yields an algorithm with both good short-term and asymptotic performance properties. Moreover,
the metamodel enables the general-purpose algorithm to become robust to the quality of initial
solutions.

3. Metamodeling for DSO The main feature of the proposed algorithm is the formulation of a
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metamodel, (i.e., an analytical approximation of the simulation-based objective function) that has a
physical term that is problem-specific. Such metamodel ideas for transportation problems have been
successfully formulated for various continuous SO problems. This is the first paper that extends
these ideas to the DSO setting. Moreover, this is the first approach to formulate a metamodel
based on a MIP. The paper shows that by using such metamodel ideas, high-dimensional DSO
problems can be addressed in a computationally efficient way. Since fundamental OR transportation
optimization problems (e.g., routing) are naturally formulated as discrete optimization problems,
the ideas of this paper lay the foundations for a variety of important and difficult transportation
problems to be addressed efficiently with data-driven simulation-based network models.

Section 2 discusses related literature. Section 3 formulates the proposed methodology. Its perfor-
mance is evaluated and benchmarked in Section 4 with experiments on both synthetic toy networks
and Boston networks. Conclusions are presented in Section 5. Algorithmic details are presented in
Appendix A. The formulation of the SP model that is used as a benchmark in Section 4.4 is given
in Appendix B. Additional implementation detailes are given in Appendix C.

2 Literature review

2.1 Vehicle-sharing service optimization

The main types of car-sharing service are two-way, one-way station-based, free-floating and peer-
to-peer. For full definitions, see for instance Schmöller et al. (2015). A station is a location with
a certain number of vehicle-sharing parking spots. Two-way services consist of a set of vehicles
parked at a set of fixed stations. In advance, customers reserve a vehicle for a given duration and a
given start time. They then pick-up and drop-off the vehicle from the same predetermined station.
Reservations can be made from several months in advance to minutes in advance. There is no
upper limit on the duration of a reservation. As of July 2015, there were an estimated 1.17 million
two-way service members along with 0.31 million one-way service members in the United States
(NCSL, 2017).

Detailed reviews of vehicle-sharing studies are given in Jorge and Correia (2013); Brandstätter et al.
(2016). Table 1 summarizes some of the recent vehicle-sharing service design literature. The column
“Optimization” indicates whether the method is analytical, simulation-based or a combination of
both. The column “Context” specifies the type of vehicle-sharing service (one-way, two-way, free-
floating) and the type of vehicle (bike, car). The column “Case study size” indicates, for the main
case study of each paper, the number of sites (e.g., locations, regions, stations), of integer and of
continuous variables (including both decision variables and auxiliary variables). Cells are left blank
for cases where these numbers are not directly reported. The “Problem” column specifies the type
of decisions the problem addresses.

The most popular approach to address vehicle-sharing (both car- and bike-sharing) service design
problems across all service types (two-way, one-way, floating) is the use of analytical mixed inte-
ger programming (MIP). Studies with deterministic demand include Correia and Antunes (2012),
Chiraphadhanakul (2013, Chapter 4), Correia et al. (2014), Nair and Miller-Hooks (2014), Zhou
(2015, Chapter 3). Past work in the field has also accounted for demand uncertainty by using
a parametric probability distribution for demand combined with optimization methods such as
stochastic programming and robust optimization (O’Mahony 2015, Chapter 4, Lu et al. 2017, He
et al., 2017).

4



Table 1: Summary of recent related vehicle-sharing service design papers

Paper
Optimization Context Case study size Problem

Analytical
Simulation-
based

One-
way

Two-
way

Free-
floating

Bike-
sharing

Car-
sharing

Site Integer Continuous
Site
location

Fleet
assignment

Station
capacity

Other

Correia and Antunes (2012) X X X 75 0 X X X Rebalance fleet
Cepolina and Farina (2012) X X X 11 9 0 X Fleet size
Chiraphadhanakul (2013,
Chapter 4)

X X X 27 27 X Route user flow

Correia et al. (2014) X X X 116 0 X X Select trips
Nair and Miller-Hooks (2014) X X X X 64 4420 6295 X X X Route user flow

Boyac̈ı et al. (2015) X X X 100 All together ∼ 105 X X

Determine fleet size,
regions served by each
station and number of
relocation personnel,
rebalance fleet

Deng (2015, Chapter 5) X X X 8 11 2 X X
Determine fleet size,
rebalance fleet

Jorge et al. (2015) X X X X 391 0 X X Select trips, rebalance fleet
O’Mahony (2015, Chapter 3) X X X 300 X X
Zhou (2015, Chapter 4) X X X 30 5133 ∼ 1.5× 107 X Route user flow
Jian et al. (2016) X X X X 466 932 0 X X

Lu et al. (2017) X X X X X 9 X X
Route user flow, rebalance
fleet

He et al. (2017) X X X 61 X
Route user flow, rebalance
fleet

This paper X X X X 315 315 0 X



Car-sharing demand-supply interactions are intricate to model, yet are critical to account for when
planning and operating car-sharing services. Studies of car-sharing demand include Millard-Ball
et al. (2005); Stillwater et al. (2009); Ciari et al. (2013); De Lorimier and El-Geneidy (2013); Coll
et al. (2014); Ciari et al. (2014, 2016b). The analytical modeling of demand involves accounting
for how the distribution of demand varies as a function of space, time, user-specific attributes (e.g.,
value of time, willingness to walk, trip purpose) and other transportation system attributes (e.g.,
alternative travel modes for that user and that trip purpose). Moreover, for two-way car-sharing,
the analytical modeling of the interaction of demand and supply is particularly difficult due to
the often low supply capacity: there are typically few car-sharing parking spots available at each
station. Hence, if a user does not find a vehicle available at the desired time and station, the
user may opt out of renting a vehicle (the demand is said to be lost, and the historical reservation
data is said to be truncated) or may opt into renting a nearby (e.g., in space, in time) reservation
(the demand is said to spillover or spillback and the historical reservation is said to be censored).
For a detailed description of truncation and censoring in the context of car-sharing, see Fields
et al. (2021). The likelihood of truncation and of censoring can depend on user characteristics
(e.g., willingness to walk, car ownership), on trip attributes (e.g., trip purpose) as well as on the
general mobility system (e.g., availability of other competitive travel alternatives). Additionally,
given this low supply capacity, it is important to account for the temporal order in which users
make reservations. In other words, modeling the first-come-first-reserve principle (i.e., the fact that
reservations are prioritized or processed in the order of their creation time) is important. Due to the
difficulties of accurately modeling car-sharing demand, as well as demand-supply interactions, we
propose to directly use disaggregate car-sharing reservation data that embeds a detailed description
of the interaction of demand and supply.

Compared to pure analytical models, stochastic simulators enable a more detailed modeling of
demand and supply uncertainties, and of demand-supply interactions, their use to address op-
timization problems of realistic dimensions remains intricate. In the context of vehicle-sharing,
simulation tools have mostly been used to evaluate the performance of fleet allocations obtained
from analytical models, i.e., the simulator is used to perform what-if analysis (Cepolina and Fa-
rina 2012, O’Mahony 2015 Chapter 5, Ciari et al. 2015). Various simulation studies that account
for car-sharing (Ciari et al., 2009, 2016a; Balac et al., 2016, 2017) have been carried out with
the MATSim transportation simulation software (MATSim, 2018). Studies, such as Cepolina and
Farina (2012) and Deng (2015, Chapter 5), have included the simulator as part of an optimiza-
tion framework and have resorted to general-purpose black-box optimization algorithms such as
simulated annealing and particle swarm optimization. The study of Jian et al. (2016) exploited
problem-specific information to yield gradient-type information. Interestingly, Jian et al. (2016)
use the solution of an analytical linear integer program as the initial solution for a simulation-based
optimization algorithm. Such an approach is also used as benchmark method in the case studies
of this paper. Of particular notice is the large-scale bike-sharing optimization instance studied in
Jian et al. (2016), which considers a set of 466 stations.

2.2 Discrete simulation-based optimization (DSO)

In this paper, in order to enable the direct use of disaggregate car-sharing reservation data for
optimization, we formulate the problem as a DSO problem. The problem has a simulation-based
objective function with discrete decision variables. Constraints are analytical (i.e., they are not
simulation-based). The main challenges of addressing such problems are the following. There is
no analytical expression available for the objective function, hence traditional (analytical) discrete
optimization algorithms cannot be used. The objective function can only be estimated by running
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a set of stochastic simulation replications. DSO problems inherit the curse of dimensionality of
discrete analytical problems. Since simulation is used, the objective function is often an intricate
(e.g., non-convex) function of the decision variables with several local optima.

There are a variety of DSO algorithms in the literature; recent reviews include Nelson (2010) and
Hong et al. (2015). DSO algorithms include Convergent Optimization via Most-Promising-Area
Stochastic Search (COMPASS) (Hong and Nelson, 2006), Adaptive Hyperbox Algorithm (AHA)
(Xu et al., 2013), R-SPLINE (Wang et al., 2013), and cgR-SPLINE (Nagaraj, 2014). Methods that
aim to identify solutions with good performance at an early stage (i.e., within few simulations)
include an extension of COMPASS known as the Industrial Strength COMPASS (ISC) (Xu et al.,
2010), as well as extension of AHA known as ISC-AHA (Xu et al., 2013). For DSO problems with
a finite, and often low-dimensional, feasible region, ranking-and-selection (R&S) techniques, such
as Chick and Inoue (2001); Frazier et al. (2008), are commonly used. An R&S review can be found
in Swisher et al. (2003).

DSO algorithms are most often designed: (i) as general-purpose algorithms, i.e., they can be used to
address a broad family of optimization problems, their use is not limited to transportation problems,
and (ii) based on asymptotic convergence properties, there is limited focus on their short-term (i.e.,
small sample performance). The performance of these general-purpose DSO algorithms is typically
illustrated with low-dimensional problems (e.g., around 20 decision variables). Few studies have
reported higher-dimensional instances. The work of Xu et al. (2013) reported experiments where
AHA successfully addressed problems with up to 100 decision variables. Developing DSO algorithms
that are suitable for high-dimensional problems remains a challenge. Past studies, such as Xu et al.
(2013), illustrate that for locally convergent general-purpose DSO algorithms, the quality of the
final solution is sensitive to the quality of the initial solution. Hence, there is also an interest to
develop algorithms with enhanced robustness to the quality of the initial solution.

There is a lack of studies that evaluate the performance of general-purpose DSO algorithms for high-
dimensional problems and under tight computational budgets (i.e., within few simulation runs).
Nonetheless, when using simulators to address optimization problems, practitioners often use the
algorithms under tight computational budgets (e.g., they terminate the algorithm once a fixed time
or a fixed number of iterations have elapsed). Hence, there is a need for computationally efficient
algorithms. These are algorithms that provide solutions with improved performance (compared to
initial solutions or solutions deployed in the field) within few simulation runs.

This paper focuses on metamodel SO approaches. A metamodel is an analytical approximation of a
simulation-based function. In this paper, we consider metamodels of the DSO objective function. In
past work, we have formulated metamodel SO algorithms for various continuous SO transportation
problems (Osorio and Nanduri, 2015; Chong and Osorio, 2017; Zhang et al., 2017; Chen et al., 2019;
Osorio, 2019). A recent review of metamodel SO methods appears in Osorio and Chong (2015).
A more detailed description of commonly used metamodels is given in Section 3.2. To the best
of our knowledge, the use of metamodel approaches for DSO has been limited to low-dimensional
problems (with up to 15 decision variables). In the broader area of transportation (i.e., not limited
to vehicle-sharing) DSO has been used in studies such as Jung et al. (2014); Chen et al. (2015);
Sebastiani et al. (2016); Jian et al. (2016); Boyac̈ı et al. (2017).

General-purpose functions (e.g., low-order polynomial functions, radial-basis functions, Kriging
functions) are the most common metamodel choice both for discrete (Xu 2012, Sun et al. 2014,
Salemi 2014 Chapter 4, Xie et al. 2016) and for continuous (Jones et al., 1998; Barton and
Meckesheimer, 2006; Wild et al., 2008; Kleijnen et al., 2010; Ankenman et al., 2010) SO prob-
lems. Osorio and Bierlaire (2013) formulate a metamodel that combines a general-purpose function
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with a problem-specific functional approximation of the SO objective function.

3 Methodology

This section presents the proposed methodology. The fleet allocation problem is formulated in
Section 3.1. The general metamodel SO framework is discussed in Section 3.2. The metamodel for
the considered car-sharing fleet allocation problem is formulated in Section 3.3 and the proposed
algorithm is described in Section 3.4. The car-sharing network simulator used in this paper as well
as the role of the car-sharing data are summarized in Section 3.5.

3.1 Fleet allocation problem formulation

We consider a two-way car-sharing system from the perspective of the car-sharing operator. The
fleet allocation problem is to assign a fleet of vehicles across a network of stations such as to
maximize the expected profit. We also refer to this problem as the fleet assignment problem. The
fleet allocation problem is studied for a given finite time horizon, which we refer to as the planning
period. To formulate the problem, we introduce the following notation.

xi number of cars assigned to station i (decision variable);
x vector of xi’s for all i ∈ I;
R(x; q1) random variable representing the revenue;
g(x; q1) expected profit (DSO objective function);
ci cost, over the planning period, of a parking space at station i;
q1 exogenous simulation parameter vector (e.g., reservation pricing);
Ni capacity of station i (i.e., number of parking spots);
X total fleet size (i.e., number of cars to assign);
I total number of stations;
I index set of all stations, I = {1, 2, . . . , I};
F feasible region.

The problem is formulated as follows:

max
x

g(x; q1) = E[R(x; q1)]−
∑
i∈I

cixi (1)

subject to ∑
i∈I

xi ≤ X (2)

xi ≤ Ni ∀i ∈ I (3)

xi ∈ Z+ ∀i ∈ I. (4)

The objective function represents the expected profit for a given fleet assignment vector, x. It is
defined as the difference between the expected revenue E[R(x; q1)] and the costs. The expected
revenue is a simulation-based function, estimates of which are obtained via simulation. The cost pa-
rameters, ci, are exogenous. In this work, they represent parking space leasing fees. Constraint (2)
bounds the total number of cars assigned across all stations with the fleet size. Constraint (3)
bounds the number of cars assigned to each station i with the space capacity of the station. The
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number of cars assigned to each station are assumed to be non-negative integers (Constraint (4)).
Constraints (2)-(4) specify the feasible region, F .

The expectation in the objective function accounts for the stochasticity in the simulation process.
The simulator, which is summarized in Figure 1 and described in more detail in Section 3.5,
combines a sampling procedure that samples from a set of car-sharing reservation data and an
assigning procedure that determines whether a reservation request will be satisfied and how it
will be satisfied. In other words, realizations of the revenue random variable R are obtained by
sampling from car-sharing reservation data. The sources of uncertainty include: (i) a stochastic
process that samples from the historical reservation data to obtain a realization of disaggregate
latent demand (or desired reservations); (ii) a stochastic description of how demand and supply
interact and how truncation and censoring occur (e.g., probability with which a user, for which
their desired reservation is not available, decides to opt out of making a reservation or decides to
find a substitute reservation).

The challenges of addressing DSO problems, such as Problem (1)-(4), were detailed in Section 2.2.
Given these challenges, we propose an algorithm that at every iteration, uses the set of estimates
of g obtained so far to formulate and solve an (approximate) analytical discrete problem that: (i)
provides good quality solutions to the underlying DSO problem, (ii) can be solved efficiently for
high-dimensional instances, and (iii) can be solved with a variety of widely-used commercial solvers.
As is detailed below, the proposed methodology combines the advantages of using a simulation-
based model (which allows for the use of more detailed models and historical data) and those of an
analytical mathematical program (which allows for computational tractability and scalability).

3.2 General metamodel approach

Let us first briefly present the main ideas of the metamodel SO approach, which are based on the
continuous SO framework of Osorio and Bierlaire (2013). To formulate the problem, we introduce
the following notation.

k iteration index of the SO algorithm;
mk metamodel at SO iteration k;
βk vector of metamodel parameters at SO iteration k, element i is denoted βk,i;
z vector of endogenous variables;
q2 vector of exogenous parameters;
gA approximation of g (Equation (1)) derived by the analytical

network model;
h constraints of the analytical network model.

Recall that a metamodel is an analytical approximation of a simulation-based function. We consider
a metamodel of the DSO objective function (1). Based on the idea of Osorio and Bierlaire (2013),
the metamodel is defined by (5) as the sum of a problem-specific function (gA) and a general-
purpose linear function (term within parenthesis of (5)). We specify the problem-specific function
(gA) as the analytical objective function of a mathematical program (more specifically of a mixed-
integer linear fleet assignment problem), which embeds a simplified representation (compared to
the simulator) of the mapping between the supply configuration (x) and the expected profit (g of
(1)). The goal of gA is to provide a good analytical approximation of the simulation-based objective
function for the considered problem. Nonetheless, this analytical approximation is not expected to
be accurate (due to the more detailed and intricate models of demand and of supply embedded in
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the simulator, that are not accounted for in the mathematical program). Hence, the metamodel
(5) can be thought of as the objective function of a MIP that is corrected for parametrically by
both a scaling term (scalar βk,0 of (5)) and an additive linear error term (term within parenthesis
of (5)).

At a given iteration k of the SO algorithm, we solve the following analytical problem, referred to
as the metamodel optimization problem.

max
x,z

mk(x, z;βk, q2) = βk,0gA(x, z; q2) +

(
βk,1 +

∑
i∈I

βk,i+1xi

)
(5)

h(x, z; q2) = 0 (6)

x ∈ F . (7)

Since gA is the objective function of a MIP, the corresponding constraints of the MIP are represented
here through the function h of (6). These are formulated in detail in Section 3.3. The constraints
of Section 3.3 consist of both equality and inequality constraints. They are summarized here as a
set of equality constraints (they can equivalently be represented as a set of inequality constraints).
Recall that the feasible region F of (7) is defined by Constraints (2)-(4).

The metamodel optimization Problem (5)-(7) differs from the simulation-based optimization Prob-
lem (1)-(4) in that: (i) it replaces the (unknown) simulation-based objective function (g of (1)) with
an analytical function (mk of (5)); (ii) it has additional constraints (Eq. (6)). The main feature
that has allowed us in the past to design efficient algorithms for continuous SO problems is the
formulation of a metamodel that embeds an analytical and problem-specific approximation of g(x).
This is the key component of the approach, yet this is also where the main methodological challenge
lies because it is necessary to formulate an analytical model that: (i) provides a good approximation
of the intricate function g(x), which as will be discussed in Section 3.3 is particularly difficult for
this car-sharing context, (ii) is scalable (i.e., is suitable to address high-dimensional instances), and
(iii) is computationally efficient. The latter is critical because the metamodel optimization problem
is solved at every iteration of the SO algorithm. Hence, it should be sufficiently efficient to warrant
the allocation of computing resources to solving it rather than to run the simulator (i.e., simulating
new points or increasing the accuracy of the estimates of simulated points).

The metamodel (mk of (5)) is a parametric function with parameter vector βk. The latter is fitted,
at every iteration of the SO algorithm, by solving a problem that minimizes a least-squares distance
between metamodel predictions and simulation observations. For more details, see Problem (14)
in Appendix A. As discussed above, the main challenge in this approach is the formulation of a
computationally efficient and scalable problem-specific approximation of g, denoted here gA. Let
us now present the proposed formulation.

Figure 1 summarizes the proposed approach. We use a car-sharing network simulator (Fields et al.,
2017), which relies on few demand modeling assumptions. Instead, it relies primarily on sampling
from historical disaggregate car-sharing reservation data (which represents potentially censored or
truncated demand) to estimate disaggregate latent (i.e., uncensored and untruncated) demand. For
a detailed description of this demand estimation methodology, see Fields et al. (2021). For a given
latent demand realization and a given supply solution (i.e., a given spatial allocation of the vehicle
fleet), the simulator stochastically evaluates the performance of the solution, this yields a set of
disaggregate reservations (which may have been censored). Section 3.5 provides a more detailed
description of the simulator. Every time new supply solutions are evaluated via simulation, the
metamodel is updated (i.e., its parameters are fitted by using all available simulation observations)
and then used to solve an analytical optimization problem. More specifically, the metamodel

10



optimization problem is a mixed-integer program (MIP). While the analytical metamodel (i.e., the
MIP) provides an aggregate description of demand and of demand-supply interactions, the simulator
operates based on a disaggregate representation of demand (i.e., individual desired reservations)
and of demand-supply interactions (i.e., individual realized reservations). Because the simulator
uses the demand data in disaggregate form, we refer to it as a data-driven DSO algorithm.

Fit metamodel parameters.
Optimize metamodel

by solving a MIP

Simulator

Reservation process

Demand estimation

Historical
disaggregate
reservation

records

New supply
solution

Simulated perfor-
mance of the solution.
Disaggregate simu-
lated reservations

Disaggregate
latent demand

Figure 1: Data-driven metamodel DSO framework

3.3 Car-sharing fleet allocation metamodel formulation

To formulate the analytical problem-specific component of the metamodel, gA, which approximates
the profit of a given fleet allocation strategy, we introduce the following additional notation.

ditl number of customers that desire a reservation at station i with start time t
and duration l;

rtl revenue from a reservation with start time t and duration l;
pij discount to the revenue if a reservation is desired for station i but is

fulfilled at (i.e., is made at) station j;
zitl number of customers that make a reservation at station i with start time

t and duration l;

zijtl number of customers that desire to make a reservation at station i with
start time t and duration l but make an adjusted reservation at station
j with start time t and duration l;

tmax number of one-hour reservation start time intervals during the planning
period (e.g., for an n-day planning period, tmax = n× 24);

lmax maximum reservation duration;
Ii set of stations “near” station i, including station i;
L set of reservation durations (in hours), L = {1, 2, . . . , lmax};
T set of reservation start time interval indices, T = {1, 2, . . . , tmax};
T1(t, l) set of reservation start times for reservations with duration l that are ongoing

at time t (i.e., they start prior to t and have not finished at time t).

11



The vector z defined in Section 3.2 consists of all variables {zitl} and {zijtl }. The function gA is
formulated as:

gA(x, z; q2) =
∑
i∈I

∑
j∈Ii

∑
t∈T

∑
l∈L

pijrtlz
ij
tl −

∑
i∈I

cixi. (8)

This function is defined as the difference between the total revenue and the total cost. Note that
in the total revenue expression, we give a discount (pij) for reservations that are adjusted (i.e.,
the initial desired reservation was not feasible because a car was not available). This allows us to
account for the impact on revenue of demand spillover (i.e., demand censoring). Note that demand
spillover and loss are described in a more detailed and disaggregate manner in the simulator (see.
Section 3.5).

The auxiliary variable zijtl is related to the decision vector x through the analytical network model,
which is denoted by h in Equation (6) and is defined as follows.∑

j∈Ii

zjitl = zitl ∀i ∈ I, ∀t ∈ T , ∀l ∈ L (9)

∑
j∈Ii

zijtl ≤ d
i
tl ∀i ∈ I, ∀t ∈ T , ∀l ∈ L (10)

∑
l∈L

zitl +
∑
l∈L

∑
t′∈T1(t,l)

zit′l ≤ xi ∀i ∈ I, ∀t ∈ T (11)

zitl ∈ R+ ∀i ∈ I, ∀t ∈ T , ∀l ∈ L (12)

zijtl ∈ R+ ∀i ∈ I, ∀j ∈ Ii,∀t ∈ T ,∀l ∈ L, (13)

where T1(t, l) = {t′ ∈ T : t′ + 1 ≤ t ≤ t′ + l − 1}. Equation (9) states that zitl, the number of
reservations at station i with start time t and duration l, is the sum of all desired reservations at
station j (with start time t and duration l) that were shifted to station i. Note that i ∈ Ii, hence this
summation includes the reservations that were desired and also made at station i (with start time
t and duration l). Equation (10) is a demand constraint. The right-hand side is the total demand
for station i with start time t and duration l. The left hand side considers the set of reservations
with a preference for station i start time t and duration l. This summation includes reservations
where: (i) the preference was available and was made, (ii) the preference was not available and
the reservation was adjusted and made at a neighboring station j (with the same start time t and
the same duration l). For a given fleet assignment, the difference between the right-hand side and
the left-hand side represents the lost demand for reservations at station i with start time t and
duration l. The left-side of the Constraint (11) consists of two terms. The first term represents the
total number of reservations at station i that start at time t. The second term represents the total
number of reservations at station i that have started prior to time t and are still ongoing. Hence,
Constraint (11) ensures that at station i and time t, the number of reserved cars (left-side of the
inequality) is bounded above by the number of cars assigned to station i. Constraints (12) and
(13) assume non-negative real values for the auxiliary variables (zitl and zijtl ). The use of real-valued
auxiliary variables, rather than integer variables, contributes to the computational efficiency of this
analytical approximation. In this model, the exogenous parameters are ditl, rtl, ci, p

ij , tmax and

lmax. Together they form the exogenous parameter vector q2. The endogenous variables are zitl, z
ji
tl

and xi. The exogenous parameters rtl, ci, p
ij and lmax are directly estimated from the data and in

consultation with Zipcar staff. Note that we have 0 ≤ pij ≤ 1 and pii = 1 for all i ∈ I and j ∈ Ii.
A discussion on the simplifications of this analytical model compared to the simulator is given in
Section 3.5.

The demand parameters (ditl) are estimated by sampling from the historical reservation data to
generate a set of disaggregate desired reservations (i.e., latent demand), which are then aggregated
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to estimate the parameters (ditl). A description of the demand sampling step is given in Section 3.5.
Unlike the analytical MIPs (metamodel MIP or SP), the simulator uses the disaggregate demand
realizations without aggregation. Since this data sampling is stochastic, the case studies of Section 4
consider various experiments based on different latent demand realizations. This serves to evaluate
the impact of varying demand on the performance of the proposed method. Similarly, a set of
latent demand realizations is used for the stochastic program (SP) benchmark of Section 4.4.

For any station i ∈ I, if we assume the maximum number of stations in the neighborhood of i,
Ii, is smaller than a constant W , i.e., |Ii| ≤ W , then the number of auxiliary variables of the
metamodel is in the order of O (W |I||T ||L|), and the number of constraints is in the order of
O (|I||T ||L|). Hence, by bounding the duration of the planning period and the maximum duration
of a reservation, the number of variables and the number of constraints increase linearly with the
number of stations. This contributes to the scalability of the model. In summary, the metamodel
optimization problem is a mixed-integer linear model, which can be solved in a computationally
efficient way with a variety of standard solvers. For the case studies of Section 4.2, the MIP (5)-(7)
is solved on average in 2.4 seconds for the the Boston South End network and in 35.1 seconds for
the large-scale Boston network of Section 4.3.

3.4 DSO algorithm: MetaAHA

The proposed metamodel is embedded within a general-purpose DSO algorithm. We have chosen
the Adaptive Hyperbox Algorithm (AHA) of Xu et al. (2013). As discussed in Section 2.2, AHA
has been used to solve high-dimensional problems with a decision vector of dimension 100. AHA
is a locally convergent random search algorithm. We use the term current iterate, denoted xk, to
refer to the point considered to have best performance at iteration k. The name AHA stems from
the sampling, at every iteration, from a region which is the intersection of the feasible region and
a hyperbox. The latter is centered at the current iterate with a size that is updated based on the
performance of the current iterate and of its neighbors. For more details, see Appendix A. Let Hk

denote the hyperbox at iteration k. The proposed algorithm, denoted MetaAHA, is an extension
of AHA. Algorithm 1 presents MetaAHA.

Each iteration k of the algorithm consists of 4 main steps. Step 1 identifies the set of points to
simulate. These can be new points that have not been simulated before or points that have already
been simulated and for which we will run additional simulation replications. Step 2 simulates these
points. Step 3 checks whether termination criteria are satisfied. Step 4 uses the set of all simulation
observations collected so far and updates the fit of the metamodel. Additional algorithmic details
and a flowchart summary of MetaAHA are given in Appendix A.

Algorithm AHA is obtained from MetaAHA by omitting Steps 1b, 1c , 3b and 4; and setting r (of
Step 1a) to n (while for MetaAHA r = n−2). Steps 1b and 1c solve mixed-integer programs. These
steps yield solutions to MIPs. Hence, they exploit problem-specific analytical structural information
provided by the analytical fleet allocation model. This information enables the algorithm to: (i)
identify points with good performance within few, or even no, simulation runs because the analytical
fleet allocation model can be solved without available simulation observations, and (ii) become less
sensitive to the quality of the initial sample. This sensitivity to the quality of the initial sample
has been identified and discussed in past AHA work (Xu et al., 2013). While both Steps 1b and 1c
exploit this problem-specific analytical information, Step 1c does so within the hyperbox, leading
to the identification of local points with good performance, while Step 1b does so in the entire
feasible region, leading to the identification of global points with good performance. In Step 2, we
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Algorithm 1 MetaAHA

Initialization:

– Initialize parameters: iteration index k = 1, hyperbox H1 = {x : 0 ≤ xi ≤ Ni,∀i ∈ I},
set n (the number of solutions to simulate per iteration). Set the number of randomly
sampled solution in each iteration r = n − 2. For the metamodel parameter vector β1,
set β1,0 = 1 and β1,i = 0 (∀i ≥ 1).

Step 1: identify the set of n points to sample

– Step 1a: obtain r points in F ∩ Hk based on the asymptotically uniform sampling
mechanism of AHA.

– Step 1b: obtain 1 point, denoted xmeta
k , as the solution to the metamodel optimization

Problem (5)-(7).

– Step 1c: obtain 1 point, denoted xmeta-hyper
k , as the solution to the metamodel optimiza-

tion Problem (5)-(7) with the additional constraint that the point belongs to Hk.

Step 2: simulation

– Following the procedure of AHA: simulate the points identified in Step 1; simulate xk−1

(for k > 1); select the point with best performance xk (i.e., update the current iterate);
update the hyperbox.

Step 3: check for algorithm termination

– Step 3a: test if xk is a local optimum following the procedure of AHA. If so, stop.

– Step 3b: if the total number of iterations exceeds the maximum number of iterations
(i.e., if the computational budget is depleted), stop.

Step 4: metamodel update

– Step 4a: for any simulated point x that has not been evaluated by the analytical network
model, evaluate it (i.e., for a given x, maximize gA(x, z) of Equation (8) over z subject
to Constraints (9)-(13)).

– Step 4b: use all simulation observations collected so far to fit the metamodel parameter
βk (i.e., solve the least squares Problem (14) defined in Appendix A).

Step 5: update iteration counter

– Set k = k + 1, proceed to Step 1.
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determine the number of replications to simulate for each point (this is done based on the approach
of AHA, which is also described in this paper in Appendix A), we simulate the points and then
update both the hyperbox and the current iterate. In Step 3b, if the computational budget is
depleted, then the algorithm is terminated without convergence. This serves to reflect the most
common way in which these algorithms are used in practice.

Note that MetaAHA does not change the main building blocks of the basic algorithm AHA. It
merely complements it by adding a problem-specific sampling strategy which is based on the use of
the metamodel. Hence, AHA’s asymptotic local optimality guarantee is preserved. MetaAHA illus-
trates how a variety of general-purpose DSO algorithms can be complemented with such problem-
specific sampling strategies to improve their robustness to the quality of the initial points as well
as their short-term (i.e., small sample) performance. For practitioners, who typically use these
algorithms under tight computational budgets, this has the potential to improve the performance
of these general-purpose algorithms.

3.5 Two-way car-sharing data and simulator

We summarize here the main ideas underlying the simulator. For more details on the specification
of the simulator as well as on its validation, see Fields et al. (2017). The simulator takes as
input disaggregate historical reservation data, estimated daily demand per station (i.e., total daily
number of reservations desired per station), a fleet assignment strategy, and yields as output a set
of realized reservations (reservations actually made) with the corresponding network-wide profit.

More specifically, the simulation process consists of two main parts, as summarized in Figure 1. The
first step, referred to as the demand sampling step, samples from the data such as to (approximately)
obtain a set of desired reservation requests (i.e., reservations that users would ideally desire to
make). These reservations can be thought of as realizations of latent demand. Hence, we distinguish
between realized demand (an empirical distribution of which is given by the dataset) and latent
demand. The second step, referred to as the reservation simulation step, considers a given latent
demand (i.e., a given set of desired reservations) and simulates the reservation process as follows.
It ranks, and then sequentially processes, the desired reservations by increasing creation time. For
a given reservation, if a car is available (at the desired station and during the desired time interval),
then the reservation is made. Otherwise, with a given probability the client will either not make
a reservation (this is referred to as lost demand) or they will consider an “adjacent” reservation,
which is either at a nearby station or at a nearby start time (this is referred to as demand spillover;
it accounts for demand censoring). The probability depends on the distance between the initially
desired reservation and the considered adjacent reservation. Once a given reservation is made, other
users cannot use the same car at any time during this reservation period. This procedure mimics
the first-come-first-reserve process.

The most important input to the simulator is the set of historical disaggregate reservation data.
In this work, we use Zipcar data. For each reservation observation in the dataset, the following
attributes are used: station (this is both the pick-up and the drop-off location), start time, duration
and reservation creation time (i.e., the timestamp of when the reservation was made). Additionally,
based on information available online we have estimated reservation revenues. The time resolution
of the simulator is based on that of the data which is 30 minutes. This means that reservation
duration and reservation start times are defined in 30 minute increments.

A main feature of this simulator is that this reservation process simulation is based on a handful of
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parameters, which are estimated from the data. Additionally, there are few modeling assumptions,
which were made in consultation with Zipcar staff. They include the probability of considering an
adjacent reservation and the formulation of a distance metric between reservations. Each of the two
steps of the simulation process described above (i.e., demand sampling and reservation simulation)
are stochastic. In other words, the generation of a set of desired reservation requests is stochastic
and the mapping of a desired reservation to a realized (or even a lost) reservation is also stochastic.

We now present the main simplifications of the analytical metamodel (i.e., of the MIP) compared
to the simulator. These simplifications also hold for the stochastic programming model that is
used as a benchmark method in the case study of Section 4.4. These simplifications contribute
to the formulation of efficient MIP models. First, the analytical model does not enforce the first-
come-first-reserve rule of the simulator. In other words, for a given set of reservation requests,
they will not be processed by increasing order of reservation creation time. Instead, the set of
reservations that leads to highest (metamodel) profit will be realized regardless of their respective
creation times. Second, the analytical model allows for reservations to be adjusted in space (i.e.,
change of station) but not in time (i.e., the start time of a desired reservation cannot change).
Third, the adjustment process is simplified. For a given reservation, the simulator checks whether
it is available, and if not with a certain probability it considers to either not make any reservation
(leading to lost demand) or to attempt a nearby (in space and time) reservation (leading to demand
spillover). The simulator iterates on these steps (i.e., a given client may attempt to make several
reservations before deciding on a final reservation or before deciding not to make a reservation).
In the analytical model, there is no sequential reservation process. Instead, demand spillover is
approximated through the discounted revenue parameter, pij of Eq (8). Fourth, the simulator
considers a time resolution of 30 minutes (i.e., reservation start times and durations are defined in
30 minute increments), while the analytical model considers a time resolution of 1 hour.

4 Case studies

In this section, we apply MetaAHA to optimize the design of two-way car-sharing systems. Sec-
tion 4.1 considers a low-dimensional problem with synthetic toy networks. Sections 4.2-4.4 con-
sider high-dimensional problems for Zipcar’s Boston market. We study its two-way services for
two Boston areas: (i) an area of downtown Boston known as South End (Section 4.2) and (ii) a
larger network that includes 23 zipcodes of the Boston metropolitan area (they include Allston, Ar-
lington, Boston, Brighton, Brookline, Cambridge, Charlestown, Chelsea, Medford and Somerville)
(Section 4.3 and 4.4). All experiments are conducted on a machine with 125GB RAM with an Intel
Xeon E5-2630 v3 processor.

4.1 Synthetic toy networks

The goal of these low-dimensional synthetic experiments is to evaluate the quality of the analytical
approximation (gA of Equation (8), which is provided by the analytical network model) of the
simulation-based objective function (g of Equation (1)). We consider 3 networks with topologies
that are simple and are representative of subnetwork topologies of Zipcar’s Boston network. The 3
networks are displayed in Figure 2. Each circle represents a car-sharing station. Each network has
four stations. Recall from Section 3.3 that, in the analytical model, when the desired reservation
of a user is not available, he/she may consider a substitute chosen from a set of neighbors that are
defined as spatially nearby locations (this set was denoted Ii in Section 3.3). In other words, these
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are stations where the demand can spillover. In Figure 2, for a given station i, its set of neighbors
or substitute stations, Ii, is the set of stations that are connected with an edge to station i. Hence,
the three network topologies of Figures 2a, 2b and 2c consider, respectively, a loosely connected
network of stations, where no stations share any neighbors; a centralized network, where all stations
have the center station as a neighbor; and a fully connected network, where all stations are neighbors
with all other stations. Each station has a capacity of 6 vehicles (i.e., Ni of Equation (3) equals
6), the fleet size is unlimited (i.e., X of Equation (2) takes any value such that X ≥ 24). Hence,
the feasible region is {x ∈ [0, 6]4 ∩ Z4}, which contains 2401 feasible solutions. The data used for
simulation is the Zipcar reservation data related to such a subnetwork. The planning period is an
8-day period in July 2014 (July 10 to July 17).

(a) Toy network 1 (b) Toy network 2 (c) Toy network 3

Figure 2: Toy network topologies

For each network, we generate a group of 10 demand scenarios. A demand scenario consists of the
desired reservations generated through the demand sampling step described in Section 3.5. The
use of various demand scenarios serves to account for demand stochasticity. For a given point, x,
one simulation replication (i.e., one simulation-based realization of its performance) is defined as
the average simulated performance over the 10 demand scenarios. For a given point, x, the final
estimate of its simulation-based performance, ĝ(x), is obtained as the average over 50 simulation
replications. For the analytical model, we generate a different demand scenario to estimate its
exogenous parameters (ditl of Equation (10)). For a given point x ∈ F , the analytical objective
function, gA(x, z∗), is obtained by maximizing Equation (8) over z subject to Constraints (9)-(13).

Each plot of Figure 3 considers one network and displays the analytical objective function, gA(x, z∗),
along the x-axis and the estimated simulation-based objective function, ĝ(x), with a corresponding
95% interval along the y-axis. The confidence intervals are barely visible. Each plot displays the
2401 feasible solutions.
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Figure 3: Comparison of the analytical objective function value with the estimated simulation-
based objective function value for toy networks

17



For all three plots, there is a positive linear correlation between the analytical approximations,
gA(x, z∗), and the simulation-based estimates, ĝ(x). This indicates that for all three representative
network topologies the analytical network model provides a good approximation of the simulation-
based objective function.

4.2 Boston South End network

We now consider the South End neighborhood in downtown Boston. A map of the area is displayed
in Figure 4. The 23 stations over which we optimize are displayed with red circles. The planning
period is July 10-17, 2014. During this period the average fleet size is 101 cars (i.e., X = 101). Based
on consultation with Zipcar, we set the station capacity, Ni, to 16. We compare the performance of
MetaAHA and AHA. This comparison serves to evaluate the added value of complementing AHA
with information from the analytical problem-specific network model. The maximum number of
algorithm iterations, K, is set to 40. At every iteration, the number of points to be simulated is
set to 10 (i.e., n = 10).

Figure 4: Zipcar stations in Boston South End neighborhood (map data: Google Maps (2017b))

To account for the stochasticity of demand, we proceed as in Section 4.1. We consider a group
of 10 demand scenarios. For a given point, x, one simulation replication (i.e., one simulation-
based realization of its performance) is defined as the average simulated performance over the 10
demand scenarios. Figure 5 contains four plots. Each plot considers a different group of 10 demand
scenarios. As in Section 4.1 for each group of demand scenarios, one additional demand scenario is
used to estimate the exogenous parameters of the analytical network model.

Each plot displays the iteration index along the x-axis and the performance estimate of the current
iterate (i.e., simulation-based estimate of the objective function of the best point) along the y-
axis. The range of the y-axis differs across the plots. Each plot illustrates, for a given demand
scenario group, the difference in performance of the two methods. Each plot displays 6 lines:
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(a) Demand scenario group 1
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(b) Demand scenario group 2
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(c) Demand scenario group 3
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(d) Demand scenario group 4

Figure 5: MetaAHA vs. AHAInit: objective function estimate of the current iterate across itera-
tions

3 solid (resp. dashed) lines that represent 3 MetaAHA (resp. AHA) runs. For all plots, we
observe the following main trends. First, MetaAHA identifies points with good performance from
the first iteration, while the points initially sampled by AHA do not have good performance.
Actually, for all six runs of MetaAHA, the best point identified in the first iteration corresponds
to the solution of the analytical fleet allocation problem (i.e., maximize gA of Equation (8) over
both x and z subject to Constraints (2)-(4) and (9)-(13)). This shows the added value of the
analytical structural information provided by gA. Note that the initial points sampled by AHA are
obtained from an asymptotically uniform sampling distribution for integral points from compact
polyhedrons as defined in Hong and Nelson (2006). This general-purpose sampling method allows
AHA to ensure asymptotic convergence properties, yet since it lacks problem-specific information,
it is not designed to provide good quality initial solutions. Second, as the iterations advance,
AHA identifies points with improved performance. This is consistent with the experiments and
observations in Xu et al. (2013), which show that AHA is an efficient algorithm for a broad class
of DSO problems. Nonetheless, it is outperformed throughout by MetaAHA. Third, MetaAHA
shows a slight improvement across iterations, yet it is not as significant as that of AHA. Fourth,
the performance of the final solution derived by MetaAHA (i.e., the current iterate at the final
iteration) is similar across the 3 MetaAHA runs, while final solutions have higher variability in
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performance for the 3 AHA runs. This indicates that MetaAHA is less sensitive to the stochasticity
of the simulator. This may be attributed to the structural analytical information provided by the
problem-specific fleet allocation model (gA).

Note that in Figure 5 all lines terminate prior to iteration 40. This occurs if a current iterate is
considered to be a local optimum (Step 3a of Algorithm 1). To limit the premature convergence
of AHA, Xu et al. (2013) have combined it with the multi-start ISC framework (Xu et al., 2010).
Also, most lines are not monotonically non-decreasing. This can occur when running additional
simulation replications of the current iterate leads to a lower objective function estimate (which
can itself lead to a change of the current iterate).

These results indicate the ability of the metamodel approach to: (i) improve the robustness of the
algorithm to the quality of the initial points, (ii) identify good solutions within very few iterations,
and (iii) lead to low variability across the performance of the derived final solutions. These are
all trends that have been observed in our past metamodel work for continuous SO transportation
problems (Zhang et al., 2017; Chong and Osorio, 2017; Chen et al., 2019; Osorio, 2019).

The results of Figure 5 indicate that a suitable approach would be to include in the initial sample
of AHA the solution proposed by the analytical fleet allocation problem (i.e., the solution that
maximizes gA of Equation (8) over both x and z subject to Constraints (2)-(4) and (9)-(13)),
and then to use the traditional AHA algorithm for all other iterations. Let AHAInit denote this
approach. We now carry out a comparison of MetaAHA with AHAInit. This comparison serves
to evaluate the added value of using analytical network model information across the iterations of
AHA, rather than limiting the use of this analytical model to the first iteration. We use the same
experimental design as for Figure 5. Figure 6 display four plots. Each plot considers a given group
of 10 demand scenarios for the simulator and one demand scenario for the analytical model. The
solid (respectively, dashed) lines represent MetaAHA (resp. AHAInit). The range of the y-axis
differs across the plots.

The following trends are common to the four plots. First, MetaAHA outperforms AHAInit across
all iterations. This reveals the added value of the metamodel mk which combines the analytical fleet
allocation information gA with the simulation information. In other words, using the analytical fleet
allocation model gA to initialize a general-purpose algorithm contributes to its efficiency, yet there
is even further added value of using the analytical information across iterations. Second, AHAInit
tends to converge more quickly to a local optimum. Often, this local optimum has performance
that is similar to that of the point obtained by solving the analytical fleet allocation problem (i.e.,
the point obtained by maximizing gA subject to Constraints (2)-(4) and (9)-(13)).

For the 12 MetaAHA runs of Figure 6 (i.e., 3 runs for each of the 4 plots), there are a total of
87 instances where the current iterate is updated. Recall that for MetaAHA a current iterate can
be of 3 types: (i) it can be a solution to the metamodel optimization problem solved in the entire
feasible region (i.e., Step 1b of Algorithm 1, which yields points denoted xmeta), (ii) it can be a
solution to the metamodel optimization problem solved in the intersection of the entire feasible
region and the hyperbox (i.e., Step 1c of Algorithm 1, which yields points denoted xmeta-hyper), or
(iii) it can be obtained from random sampling (i.e., Step 1a of Algorithm 1, which yields points
denoted xsampled). Note that a point can be both of type xmeta and of type xmeta-hyper. This occurs
when the solution to the metamodel optimization problem in the entire feasible region is located
in the hyperbox. Of the 87 different current iterates of the 12 MetaAHA runs in Figure 6, more
than two thirds (i.e., 71.3% or 62 points) are of type xmeta or xmeta-hyper, while less than one third
(28.7% or 25 points) are of type xsampled. In other words, two thirds of the current iterates are
obtained by using the structural information of the analytical network model. For the 12 final best
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(a) Demand scenario group 1
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(b) Demand scenario group 2
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(c) Demand scenario group 3
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(d) Demand scenario group 4

Figure 6: MetaAHA vs. AHAInit: objective function estimate of the current iterate across itera-
tions

solutions returned by the MetaAHA runs, 9 of them are identified by solving the metamodel and
3 of them by random sampling. Moreover for the 12 runs of MetaAHA, we simulated 2364 points.
Only 18.1% of the simulated points are obtained by solving the metamodel (429 points), while
the remaining 81.9% are obtained by random sampling. Hence, even though the points derived
by metamodel evaluations represent only 18.1% of the total set of sampled points, they lead to
75% of the final solutions and 71.3% of the current iterates. This highlights the added value of the
structural information provided by the analytical MIP. Among the 62 current iterates obtained by
using structural analytical information, 21 are of type xmeta and 47 are of type xmeta-hyper (note
that 6 points are both of type xmeta and xmeta-hyper). This shows that both the global (i.e., in the
entire feasible region) and the local (i.e., in the hyperbox) information of the analytical network
model help to identify points with improved performance. Recall that the metamodel is fitted after
every iteration, hence the metamodel optimization problems solved across iterations differ and
hence their solutions may differ. It is through this fitting process that the metamodel combines
information from the simulator with information from the analytical network model. The high
number of distinct current iterates identified by the metamodels illustrates the added value, across
iterations, of combining the analytical information with the simulated information.
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We created the following Table 2 to present the runtime of AHA, AHAInit, and MetaAHA for the
Boston South End case. For each algorithm, we use all 3 runs of the 4 groups of inputs (hence 12
runs in total for each algorithm) to compute the following averages per algorithm run: the average
number of iterations, the average total runtime, and the average total simulation runtime. For
MetaAHA, we also compute the average total metamodel solution time. We can see that AHAInit
has on average smaller number of iterations, which shows that it converges very quickly at a local
optimum. Also in the Boston South End case, the metamodel solution time is low.

Table 2: Computational runtime comparison of AHA, AHAInit, and MetaAHA

Algorithm
Agerage number

of iterations
Average total

algorithm runtime (hr)
Average total

simulation time (hr)
Average total metamodel

solution time (hr)

AHA 25.41 0.90 0.88 N/A
AHAInit 11.75 0.36 0.35 N/A

MetaAHA 21.58 0.64 0.58 0.03

Figure 7 compares the performance of the best fleet assignment identified by MetaAHA (the pro-
posed strategy) with that used by Zipcar during the planning period of interest. The final proposed
(or “best”) MetaAHA solution is defined as follows. We consider a set of 50 new demand scenar-
ios. For all 12 solutions derived by MetaAHA (i.e., 3 algorithmic runs for each of the 4 plots of
Figure 6), we estimate the average (over the 50 demand scenarios, each scenario is simulated with
50 replications) performance. The proposed solution is that with the best (i.e., largest) average
performance.
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Figure 7: Comparison of the Zipcar fleet assignment with the proposed assignment for the Boston
South End network

Figure 7 displays two plots. The left plot compares the profit estimates of the two assignments.
The right plot compares them according to vehicle utilization. Both of these metrics are important
for Zipcar. For each plot, the x-axis considers the Zipcar assignment and the y-axis considers the
MetaAHA proposed assignment. Each plot displays 50 points, which correspond to 50 demand
scenarios. For each demand scenario, we estimate the performance based on 50 simulation repli-
cations. The performance estimate of each point is displayed along with a, barely visible, 95%
confidence interval along each direction. Both the left and the right plots indicate that for all 50
demand scenarios the proposed plan yields improved performance, and this across all 50 demand
scenarios. Compared to Zipcar’s fleet assignment, the proposed solution yields an average improve-
ment of profit of 3.2% and of vehicle utilization of 2.2%. Recall that these estimates are obtained
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via simulation. Hence, they do not state that the proposed method outperforms the Zipcar method
when deployed in the field.

4.3 Boston area network - comparison versus AHAInit

In this section, we consider a larger area of the Boston metropolitan area. This serves to evaluate the
performance of MetaAHA for a high-dimensional problem. We consider a network of 315 stations
distributed throughout 23 zipcodes that span over Allston, Arlington, Boston, Brighton, Brookline,
Cambridge, Charlestown, Chelsea, Medford and Somerville. The map of Figure 8 displays the
stations as red circles. We consider the same planning period as before. The station capacity, Ni,
is set to 16, based on consultation with Zipcar. Historical data indicates that, during this planning
period, there are an average of 894 cars assigned to these stations, i.e., X = 894. We proceed
as before and consider a group of 10 demand scenarios. One additional demand scenario is used
to estimate the exogenous parameters of the analytical model. We set the maximum number of
iterations to 40 (i.e., K = 40) and the number of points to simulate per iteration to 70 (i.e., n = 70).

Figure 8: 315 Zipcar stations in Boston area (map data: Google Maps (2017a))

Figure 9 displays the results of 8 MetaAHA runs (solid lines) and 8 AHAInit runs (dashed lines).
Only 3 of the 16 runs deplete the computational budget (i.e., they stop at iteration 40). They
correspond to 3 MetaAHA runs. More specifically, the 8 MetaAHA runs stop at iterations 13, 14,
24, 33, 33, 40, 40 and 40. Those of AHAInit stop at iterations 14, 15, 15, 19, 20, 24, 33 and 38.
All 8 runs of AHAInit yield final solutions with similar objective estimates. Seven out of the 8
MetaAHA final solutions are better than all 8 AHAInit final solutions.

In this work, the maximum number of DSO iterations is fixed a priori. This is standard practice in
DSO and continuous SO applications that involve compute-costly simulators. However, it is worth
studying the use of more appropriate stopping mechanisms that account for both the performance
of the current iterate (i.e., the best point found so far) and the compute cost per iteration.

Figure 10 compares the performance of the best solution identified by MetaAHA with the fleet
assignment strategy used by Zipcar. To evaluate the performance of a given fleet assignment
strategy (that proposed by MetaAHA or that of Zipcar), we proceed as before. We generate
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Figure 9: MetaAHA vs. AHAInit: objective function estimate of the current iterate across itera-
tions

50 demand scenarios. For each of the 8 final solutions derived by MetaAHA and for each demand
scenario, we run 50 simulation replications to estimate the average profit per solution. The solution
with the highest average simulated profit is selected as the proposed solution. Figure 10 displays two
plots: the left plot considers profit and the right plot considers vehicle utilization. For each plot, the
x-axis considers the Zipcar assignment and the y-axis considers the proposed assignment. Each plot
displays 50 points which correspond to the 50 demand scenarios. Each point estimate is displayed
along with a 95% confidence interval along both directions. The confidence intervals, which are
barely visible, are computed based on 50 replications. For both plots, the 50 points, which represent
50 different demand scenarios, are above the diagonal. Compared to Zipcar’s fleet assignment, the
proposed solution yields an average improvement of profit of 6% and of vehicle utilization of 3.1%.
Moreover, for all 50 demand scenarios, the proposed strategy improves both the profit and the fleet
utilization. Again, note that this comparison is based on simulated performance, which may not
reflect field performance.

4.4 Boston area network - comparison versus stochastic programming

As mentioned in Section 1, the most common approach to study the fleet assignment problem
is the use of analytical optimization methods, such as mathematical programs. In this section,
we benchmark the performance of the proposed approach to stochastic programming (SP), which
accounts for demand uncertainty. We consider a two-stage SP, where the second stage accounts
for demand scenario realizations. The SP formulation is given in Appendix B. We use the same
Boston area network as that of Section 4.3. We consider a set of 9 experiments with varying levels
of demand and of cost. Demand is scaled by a factor: λ ∈ {1, 2, 3}, cost (i.e., term ci of Eq.(1))
is scaled by a factor: θ ∈ {1, 2, 3}. For each experiment (i.e., a given value of (λ, θ)), we proceed
as follows. We consider one demand scenario to estimate the exogenous parameters of MetaAHA,
and 3 additional demand scenarios for SP and for the simulator. Hence, the SP model and the
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Figure 10: Comparison of the Zipcar fleet assignment with the proposed assignment for the Boston
area network

simulator used as part of MetaAHA have the same demand input. When evaluating a solution
via simulation (within MetaAHA), the simulated estimate of the objective function is obtained as
the average over the 3 demand scenarios. We solve the SP model to obtain one SP solution. We
run MetaAHA 3 times (in order to account for the stochasticity of both the simulator and the
algorithm) to obtain 3 MetaAHA solutions. We use the same MetaAHA algorithmic parameters as
in Section 4.3 (i.e., K = 40 and n = 70). For each final solution (SP or MetaAHA), we simulate its
performance considering 50 demand scenarios and 50 simulation replications per demand scenario
(for a total of 2500 simulations per solution). We compare the performance of the SP solution to
that of the best MetaAHA solution, which is defined as that with the best simulated profit over
the 2500 simulations.

Figure 11 displays 9 plots, one for each experiment. The demand scaling factor λ (resp. cost
scaling factor θ) is constant across columns (resp. rows) and increases across rows (resp. columns).
Each plot displays 50 points, which correspond to each of the 50 demand scenarios. The y-axis
(resp. x-axis) displays the estimated, via simulation, mean profit over 50 replications using the SP
(resp. best MetaAHA) solution. Each point has a 95% confidence interval along both coordinate
directions. These intervals are barely visible. Each plot also displays the diagonal line defined by
y = x.

For λ = 1 (i.e., top row of plots: Figures 11a, 11b, 11c), all 50 points are above the diagonal line.
In other words, the SP solution outperforms that of MetaAHA. More specifically, the SP solution
improves, on average, the profit by 0.65%, 0.43% and 0.21%, for θ = 1, 2 and 3, respectively. This
trend is reversed for the other 2 rows of plots. For λ = 2 (i.e., second row of plots), MetaAHA
outperforms SP by an average of 0.1%, 0.26% and 1.36%, for θ = 1, 2 and 3, respectively. For
λ = 3 (bottom row of plots), MetaAHA outperforms SP, on average, by 0.51%, 2.80% and 3.48%,
for θ = 1, 2 and 3, respectively. For demand levels λ of 2 or 3 (i.e., second or third row of plots),
as the cost level θ increases, so does the amount by which MetaAHA outperforms SP. For a given
cost level (i.e., a given column of plots), as the demand level increases (i.e., from the top row to
the bottom row), so does the amount by which MetaAHA outperforms SP.

Figure 12 considers the same 9 levels of demand and cost. It evaluates the ability of SP to approx-
imate the simulation-based objective function. Each point of Figure 12 considers a given feasible
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Figure 11: Comparison of the average profit, considering 50 demand scenarios, of the SP solution
and of the best MetaAHA solution

solution and displays along the x-axis the simulated estimate of its objective function value and
along the y-axis its SP objective function value. Each plot considers a set of the following 30
feasible solutions: the SP optimal solution (displayed as a blue circle), the best MetaAHA solution
(displayed as a red triangle), and a set of 28 randomly sampled solutions (black crosses) that are in
the neighborhood of the line connecting the SP optimal solution and the best MetaAHA solution
(the sampling process is detailed in Appendix C). The diagonal line, y = x, is also displayed. For
each solution, the SP objective function value and the simulation-based objective function estimate
are based on the same 3 demand scenarios. These demand scenarios are the same as those used to
derive the SP solution of the previous analysis. The simulation-based objective function estimate
is obtained as the average across 50 replications of each of these 3 demand scenarios (i.e., each
estimate involves 150 = 50×3 simulation evaluations). Figure 13 differs from Figure 12 in that the
y-axis of each plot displays the metamodel objective function value. The value of the metamodel
parameter β is that of the last iteration of the MetaAHA run which generated the best MetaAHA
solution. Each of the 9 subplots of Figure 12 have the same axis limits as the corresponding subplot
in Figure 13. Hence, the subplots are directly comparable across Figures 12 and 13.

For all plots of Figure 12, all points are above the diagonal line, i.e., SP tends to overestimate the
simulated profit for all cost and demand levels. For λ = 1, the SP objective function exhibits a
positive linear correlation with the simulated estimate. This also occurs for (λ, θ) ∈ {(2, 1), (2, 2)}.
Hence, the SP model correctly ranks the performance of the feasible solutions, and hence is an
adequate tool for optimization. Nonetheless for high values of demand and of cost (i.e., all plots
with λ = 3, as well as the plot (λ, θ) = (2, 3)), there is no longer a positive linear correlation.
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Figure 12: Comparison of the objective functions of the SP model and of the simulation model
across various demand levels and cost levels.
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Figure 13: Comparison of the objective functions of the metamodel and of the simulation model
across various demand levels and cost levels.
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For all plots of Figure 13, all points are close to the diagonal line. This indicates that the metamodel
approximates well the simulation-based objective function. The positive linear correlation also
highlights the ability of the metamodel to correctly rank the performance of the solutions, and
hence its adequacy for optimization. Unlike Figure 12, this correlation trend holds even for high
levels of demand and of supply.

These figures indicate the ability of the metamodel approach to approximate the simulation-based
objective function even as the demand-supply interactions become more intricate to model (i.e.,
when both demand levels and cost levels are high). Recall that the main simplifications of the
MIPs (both the metamodel MIP and the SP) compared to the simulator are the lack of the first-
come-first-reserve principle, as well as the coarse description of demand spillover (for a description
of these simplifications, see the last paragraph of Section 3.5). Hence, we expect the ability of
the MIPs to approximate the simulator’s objective function to deteriorate as the demand and
cost levels increase. This is illustrated by comparing Figures 12 and 13. Moreover, the results of
Figure 13 indicate that a simple linear parametric correction to the MIP (through the metamodel
parameter β) suffices to correct for these simplifications. In other words, we need not resort to the
formulation of a more intricate analytical optimization problem (e.g., with nonlinear functions to
describe spillover in more detail).

Figure 14 illustrates how the coarse MIP modeling of demand spillover impacts the solution quality
as congestion increases. The figure considers the same 9 demand and cost combinations as the
previous figures. It displays one plot per combination. The y-axis (resp. x-axis) displays the esti-
mated, via simulation, mean spillover ratio over 50 replications using the SP (resp. best MetaAHA)
solution. The spillover ratio is the proportion of reservations that incurred spillover (either spatial
and/or temporal), meaning that the first choice of and/or reservation time was not available and
the user opted for an alternate station and/or reservation time. The spillover ratio is estimated by
simulating the performance of the solution. Each point has a 95% confidence interval along both
coordinate directions. These intervals are barely visible. Each plot also displays the diagonal line
defined by y = x. Points along the diagonal line indicate that the SP and the MetaAHA solutions
yield a similar proportion of simulated spillovers. As congestion increases (i.e., going from the top
to the bottom row plot and/or going from the left-most to the right-most plot), the MetaAHA
solution yields increasingly higher spillover ratios compared to the SP solution. In other words, as
congestion increases, the solutions identified by MetaAHA allow for a larger proportion of users to
spillover compared to the solutions identified by the SP. Recall from Figure 11, that as congestion
increases so does the amount by which the MetaAHA solution outperforms the SP solution. Hence,
as congestion increases, the MIP modeling of spillover becomes increasingly inaccurate, and com-
bining this MIP modeling with information from the more detailed simulator becomes increasingly
important to identify good quality solutions.

4.4.1 Compute times

Table 3 displays, for each demand and cost combination, the computational runtimes for SP and
for the MetaAHA run that led to the best solution. All runtimes are reasonable, or even fast, for
this problem which is solved offline on an approximately weekly basis. SP runtimes are lower than
the MetaAHA runtimes by 1-2 orders of magnitude. Note that there are many straightforward
opportunities to parallelize the MetaAHA code and substantially reduce the compute times. The
current implementation is not parallelized.

Figure 15 provides a more detailed computational runtime analysis of MetaAHA. It considers the
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Figure 14: Comparison of the average spillover ratio, considering 50 demand scenarios, of the SP
solution and of the best MetaAHA solution

steps of Algorithm 1 that are the most computationally costly: Steps 1b, 1c, 2, and 4a. The
top 9 boxplots consider the computational runtime of Step 4a (which is referred to as “Analytical
evaluation”) for each of the 9 demand-cost scenarios. The middle 9 boxplots consider the compu-
tational runtime of Steps 1b and 1c (which are referred to as “Metamodel solution”) for each of
the 9 scenarios. The bottom 9 boxplots consider the computational runtime of Step 2 (which is
referred to as “Simulation”) for each of the 9 scenarios. Each boxplot considers compute time of
the given algorithmic step(s) per algorithmic iteration. Since we have run MetaAHA 3 times for
each demand-cost scenario, each boxplot considers the compute times per iteration of all iterations
of the 3 runs.

The simulation runtimes dominate the runtime per iteration. For a given algorithmic step, the
higher the demand (i.e., higher λ), the higher the compute times. For Step 1b and 1c, a higher
demand leads to a higher number of MIP constraints, which can increase the compute times. For
Step 2, a higher demand leads to a higher number of potential reservations that need to be processed
sequentially in time, thus the higher compute times.
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Table 3: Computational runtime comparison of SP and of MetaAHA

λ θ
Solution time

of SP (hr)
Run time of

MetaAHA (hr)

1 1 0.07 16.92
1 2 0.07 10.89
1 3 0.07 16.97
2 1 0.43 33.84
2 2 0.86 22.18
2 3 0.49 36.78
3 1 1.19 51.33
3 2 1.04 59.14
3 3 1.04 41.9

The high variability of the runtimes for Step 4a (“Analytical evaluation” boxplots) is due to the
varying number of points for which the corresponding linear program needs to be solved. More
specifically, at a given iteration, an LP is solved for every simulated point for which the analytical
network model has not been evaluated. The number of such points can vary substantially across
iterations. Note that we solve these LPs sequentially, they could be evaluated in parallel. This is
an example of a simple parallelization step that can contribute to reduce compute times if this is
of interest.

Figure 15 indicates that, for a given demand level, the time to solve the metamodel decreases as
the cost level increases. However, the change in cost level does not have any significant impact on
the compute time for simulation or for analytical model evaluation. Since the main compute time
bottleneck per iteration is the simulation runtime, the change in cost level does not impact the
overall algorithm runtime.
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Figure 15: All type of computational time for all demand scenarios
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5 Conclusions

This paper formulates a DSO algorithm for a family of large-scale car-sharing fleet allocation
problems. The approach is a metamodel SO approach. A novel metamodel is formulated, which is
based on a MIP formulation. The metamodel is embedded within a general-purpose DSO algorithm.
The proposed algorithm is validated with synthetic toy network experiments. The metamodel
approximations of profit are shown to have a positive linear correlation with the higher resolution
simulation-based profit estimates. The algorithm is then applied to several Boston case studies
using Zipcar car-sharing reservation data, including a high-dimensional problem. The method is
first benchmarked versus two types of algorithms that differ only in their use of the analytical MIP
information: one benchmark algorithm (AHA) does not use any analytical network information (i.e.,
no MIP information), the second benchmark algorithm (AHAInit) uses the MIP information only to
identify an initial solution but not throughout the optimization process. The experiments indicate
that the analytical network model information is useful both at the first iteration of the algorithm
and across iterations. The solutions derived by the proposed method are also benchmarked versus
the Zipcar deployed solution. Via simulation, the proposed solutions outperform those deployed,
both in terms of profit and vehicle utilization. This holds for all considered demand scenarios.
We also benchmark MetaAHA versus stochastic programming (SP). SP outperforms the proposed
approach for low levels of demand and of cost. As demand and cost levels increase, so does the
occurrence of demand spillback and the importance of accounting for the first-come-first-reserve
principle. In these cases, the SP approach is outperformed by the metamodel approach.

The combination of the problem-specific analytical MIP with a general-purpose SO algorithm
enables the DSO algorithm to: (i) address high-dimensional problems, (ii) become computationally
efficient (i.e., it can identify good quality solutions within few simulation observations), (iii) become
robust to the quality of the initial points and to the stochasticity of the simulator. More generally,
the information provided by the MIP to the SO algorithm enables it to exploit problem-specific
structural information. Hence, the simulator is no longer treated as a black box.

We view this general idea of combining analytical MIP formulations with general-purpose SO algo-
rithms, or more broadly with general-purpose sampling strategies, as an innovative and promising
area of future research. With the increase in the availability and the resolution of transportation
data comes the potential to address more intricate formulations of traditional transportation opti-
mization problems (e.g., formulations with a more detailed probabilistic data-driven description of
demand). This paper illustrates how the traditional MIP formulations that exist can be coupled
with high-resolution data, a sampling (or simulation) strategy, and a general-purpose SO algorithm,
to address this next generation of transportation problems.

There is a wide variety of general-purpose DSO algorithms. As general-purpose algorithms, they
can be used to address a broad class of problems. Nonetheless, they are rarely designed such as
to achieve good short-term performance (i.e., good performance within a few simulation runs).
This paper illustrates how the scalability, computational efficiency, and robustness of these SO
algorithms can be enhanced such as to enable them to address realistic transportation problems.

The proposed approach performs optimization preserving the disaggregate information in the data
(rather than limiting its use to fitting aggregate demand parameters). This leads to a data-driven
approach that exploits the rich information of demand and demand-supply interactions embedded
in the data. Nonetheless, this also limits its use for car-sharing markets where data is unavailable
or unreliable. In particular, it is not directly applicable to new markets where data has not yet
been collected.
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In the proposed approach the analytical MIP is solved at every iteration of the DSO algorithm.
This setting is reasonable in the case of two-way car-sharing service design mainly because solving
the MIP is relatively fast compared to the simulation time. For future work, it is of interest to
formulate a learning mechanism that determines, at every DSO iteration, whether to solve the MIP
or not.

In past work for continuous SO problems (Tay and Osorio, 2022), we have studied the added value
of using information from the physical model to devise more efficient exploration (e.g., to define
global sampling distributions) or more efficient exploitation (e.g., optimization) techniques. We
have evaluated the added value of combining these ideas. The extension of this work to a discrete
optimization setting is an area of future work. Extensions of ongoing interest include the use of
MIPs to enable the design of real-time DSO problems.

In recent years, reinforcement learning (RL) has been used to optimize on-demand transportation
services. Examples of such studies include Zhu et al. (2021) and Xie et al. (2023), and also illustrated
by the recent review of Qin et al. (2022). Using MIPs to enhance the sample efficiency of RL is an
area of future work. More generally, exploiting information from low-resolution compute-efficient
MIPs to boost the small-sample performance of RL techniques is of interest.
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Appendix A Algorithmic details

In this section, we present algorithmic details of MetaAHA. The algorithmic steps refer to Algo-
rithm 1. In Step 2 of the algorithm, the number of simulation replications to run for a given point x
up until and including iteration k, denoted Nk(x), is computed based on the approach of AHA (Xu
et al., 2013). It is given by Nk(x) = min{5, d5(log k)1.01e}. If at a given iteration k, the number of
simulation replications of point x obtained from previous iterations is greater or equal to Nk(x),
then we do not evaluate additional replications.

In Step 2 of the algorithm, the hyperbox is updated based on the following AHA approach (Xu
et al., 2013). Let xk denote the current iterate at iteration k, with the ith element denoted xk,i.
Let E(k) denote the set of points that have been simulated up until and including iteration k. The
hyperbox is defined (or updated) at iteration k as Hk = {x : lk,i ≤ xi ≤ uk,i,∀i ∈ I}. The bounds
lk,i and uk,i are defined as follows.

lk,i = max
x∈E(k)\{xk}

{xi : xi < xk,i} , ∀i ∈ I.

If lk,i is empty, then set lk,i = 0. Similarly,

uk,i = min
x∈E(k)\{xk}

{xi : xi > xk,i} , ∀i ∈ I.
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If uk,i is empty, then set uk,i = Ni.

Step 4b of the algorithm fits the metamodel parameter βk by solving the below least squares
problem, which is formulated and discussed in more detail in Osorio and Bierlaire (2013).

min
βk

∑
x∈E(k)

[wk(x) (ĝ(x; q1)−mk(x, z;βk, q2))]2 + (w0(βk,0 − 1))2 +

|I|+1∑
i=1

(w0βk,i)
2, (14)

where w0 is a fixed scalar weight, ĝ(x; q1) represents the simulated estimate of the profit function
for point x, and the weight wk(x) function is defined as wk(x) = 1/(1 + ‖x − xk‖2). The least
squares problem minimizes a weighted distance between the simulated profit estimates ĝ and the
metamodel predictions mk. Each point is weighted by a distance function that gives more weights
to points that are closer to the current iterate, such as to improve the local (i.e., close to the current
iterate) fit of the metamodel. The additional terms in the least squares problem are included such
as to ensure a full rank least-squares matrix.

Figure 16 provides a flowchart summary of the MetaAHA algorithm.

(1) Solve problem (5)-(7) and obtain xmeta
k ;

(2) Solve problem (5)-(7) with constraint x ∈
Hk and obtain xmeta-hyper

k ;
(3) Randomly sample r points from F ∩Hk

Initialize algorith-
mic parameters

Simulate all points derived in the
above step; simulate xk−1 if k > 1

Determine the current iterate xk

Update Hk

Is xk a local
optimum or is the

computational
budget depleted?

Return xk

For all solutions simu-
lated during iteration k,

maximize gA(x,z) over z
with Constraints (9)-(13)

Fit metamodel
to estimate βk+1

Set k = k + 1

yes
no

Figure 16: MetaAHA Steps

33



Appendix B Stochastic programing (SP) formulation

To formulate the SP model, we use the notation of the main manuscript and introduce the following
notation.

Q number of demand scenarios;

d
i(q)
tl number of customers that desire a reservation at station i with start time

t and duration l in demand scenario q;

z
i(q)
tl number of customers that make a reservation at station i with start time

t and duration l in demand scenario q;

z
ji(q)
tl number of customers that desire to make a reservation at station j with

start time t and duration l but make an adjusted reservation at station
i with start time t and duration l in demand scenario q;

z vector that combines all variables {zi(q)
tl } and {zji(q)

tl };
π(q) probability of scenario q, set to 1/Q;
q3 vector of exogenous parameters;
gSP analytical approximation of g (Equation (1)) derived by the SP model.

We view the fleet allocation strategy x as the first-stage decision variables, and the demand-supply
interaction z as the second-stage decision variables. The SP problem is formulated as follows.

max
x,z

gSP (x, z; q3) =

Q∑
q=1

π(q)

∑
i∈I

∑
j∈Ii

∑
t∈T

∑
l∈L

pijrtlz
ij(q)
tl

−∑
i∈I

cixi, (15)

subject to

∑
j∈Ii

z
ji(q)
tl = z

i(q)
tl ∀i ∈ I, ∀t ∈ T , ∀l ∈ L,∀q ∈ {1, 2, . . . , Q}, (16)

∑
j∈Ii

z
ij(q)
tl ≤ di(q)

tl ∀i ∈ I, ∀t ∈ T , ∀l ∈ L,∀q ∈ {1, 2, . . . , Q}, (17)

∑
l∈L

z
i(q)
tl +

∑
l∈L

∑
t′∈T1(t,l)

z
i(q)
t′l ≤ xi ∀i ∈ I, ∀t ∈ T , ∀q ∈ {1, 2, . . . , Q}, (18)

z
i(q)
tl ∈ R+ ∀i ∈ I, ∀t ∈ T , ∀l ∈ L,∀q ∈ {1, 2, . . . , Q}, (19)

z
ij(q)
tl ∈ R+ ∀i ∈ I, ∀j ∈ Ii,∀t ∈ T ,∀l ∈ L, ∀q ∈ {1, 2, . . . , Q}, (20)

x ∈ F , (21)

where T1(t, l) = {t′ ∈ T : t′+ 1 ≤ t ≤ t′+ l− 1}. In this model, the exogenous parameters are d
i(q)
tl

and π(q), as well as rtl, ci, p
ij , tmax and lmax defined in Section 3.3, represented by the vector q3. The

objective function (15) is the expected revenue over all scenarios minus the cost. Constraints (16)-
(20) are the equivalent of their MIP counterparts Constraints (9)-(13), respectively. Constraint (21)
is equivalent to Constraint (7).
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Appendix C Sampling of feasible solutions for the experiments of
Figures 12 and 13

For a given demand scenario, let x(1) be the SP solution and x(2) be the best MetaAHA solution
of the experiments of Section 4.4. We use the following procedure to generate a solution near the
line connecting the SP optimal solution and the best MetaAHA solution:

• Step 1: generate u ∼ U(0, 1), where U(0, 1) is the standard uniform distribution.

• Step 2: let x̃ = x(1) + u
(
x(2) − x(1)

)
.

• Step 3: build a hyperbox H(x̃) = {x : x̃i − 2 ≤ xi ≤ x̃i + 2,∀i ∈ I}.

• Step 4: randomly sample a point x from H(x̃) ∩ F using the uniform sampling distribution
of AHA (Xu et al., 2013).
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